首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The presence of types II, IX and V collagen was probed in the organ of Corti of the adult gerbil cochlea by use of immunocytochemistry at the light- and electron-microscopic levels. Type II collagen is found in the connective tissues of the osseous spiral lamina and spiral limbus. In the region of the sensory hair cells it is present in the tectorial membrane and antibodies bind to the thick unbranched radial fibers. Type IX collagen co-localizes with type II collagen in the tectorial membrane, where antibodies bind to the thick unbranched radial fibers. Type V collagen is present in the connective tissue of the spiral limbus, the osseous spiral lamina, the eighth nerve, and the tectorial membrane. In the tectorial membrane, the staining with antibodies to type V collagen is more diffuse than that seen for types II and IX collagen and antibodies to type V bind to the thin, highly branched fibers in which the thick fibers are embedded. The results indicate that collagens characteristic of cartilage are localized in the organ of Corti. Within the tectorial membrane, types II and IX collagen form heterotypic thick fibers embedded in a reticular network of type V collagen fibers. These collagens form a highly structured matrix which contributes to the rigidity of the tectorial membrane and allow it to withstand the physical stresses associated with transmission of the stimuli necessary for sensory transduction.  相似文献   

2.
There is evidence that spalacine, tachyoryctine, and myospalacine mole‐rats all communicate with conspecifics through a form of seismic signaling, but the route for the detection of these signals is disputed. It has been proposed that two unusual anatomical adaptations in Spalax allow jaw vibrations to pass to the inner ear via the incus and stapes: a pseudoglenoid (=postglenoid) fossa which accomodates the condylar process of the mandible, and a bony cup, supported by a periotic lamina, through which the incus articulates with the skull. In this study, a combination of dissection and computed tomography was used to examine the ear region in more detail in both Spalax and its subterranean relatives Tachyoryctes and Eospalax, about which much less is known. Tachyoryctes was found to lack a pseudoglenoid fossa, while Eospalax lacks a periotic lamina and bony cup. This shows that these structures need not simultaneously be present for the detection of ground vibrations in mole‐rats. Based on the observed anatomy, three hypothetical modes of bone conduction are argued to represent more likely mechanisms through which mole‐rats can detect ground vibrations: ossicular inertial bone conduction, a pathway involving sound radiation into the external auditory meatus, and a newly‐described fluid pathway between pseudoglenoid fossa and cranial cavity. The caudolateral extension of the tympanic cavity and the presence of a bony cup might represent synapomorphies uniting Spalax and Tachyoryctes, while the loss of the tensor tympani muscle in Spalax and Eospalax may be convergently derived. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
The hearing organ contains sensory hair cells, which convert sound-evoked vibration into action potentials in the auditory nerve. This process is greatly enhanced by molecular motors that reside within the outer hair cells, but the performance also depends on passive mechanical properties, such as the stiffness, mass, and friction of the structures within the organ of Corti. We used resampled confocal imaging to study the mechanical properties of the low-frequency regions of the cochlea. The data allowed us to estimate an important mechanical parameter, the radial strain, which was found to be 0.1% near the inner hair cells and 0.3% near the third row of outer hair cells during moderate-level sound stimulation. The strain was caused by differences in the motion trajectories of inner and outer hair cells. Motion perpendicular to the reticular lamina was greater at the outer hair cells, but inner hair cells showed greater radial vibration. These differences led to deformation of the reticular lamina, which connects the apex of the outer and inner hair cells. These results are important for understanding how the molecular motors of the outer hair cells can so profoundly affect auditory sensitivity.  相似文献   

4.
Cell-surface glycoconjugates, such as proteoglycans, glycoproteins, and glycosphingolipids have been suggested to serve important functions in hearing because of their variety and their specific expression patterns during the development and maturation of cochlea. However, there has been no definitive proof regarding their involvement in auditory functions. In this study, we provide an overview of the expression of glycoconjugates in auditory systems and consider their possible involvement in hearing functions. We include our recent findings regarding deafness in ganglioside (sialic acid containing glycosphingolipids)-deficient mice, and address the importance of functional glycobiology in auditory systems.  相似文献   

5.
6.
豚鼠是听觉机能研究最常应用的动物,在其颅骨的鼓泡上,有一卵圆形的小孔,称为下鼓道口,在此插入电极,可抵鼓岬部,能够很好地记录出耳蜗电图。此方法简便、可靠,不需要打开乳突,是从鼓岬部记录耳蜗电图的一种新途径,在听觉机能研究及生理学实验教学中具有广泛的应用价值。  相似文献   

7.
Summary Tube feet of the sea urchin Strongylocentrotus franciscanus were studied with the scanning electron microscope (SEM). By use of fractured preparations it was possible to obtain views of all components of the layered tube-foot wall.The outer epithelium was found to bear tufts of cilia possibly belonging to sensory cells. The nerve plexus was clearly revealed as being composed of bundles of varicose axons. The basal lamina, which covers the outer and inner surfaces of the connective tissue layer, was found to be a mechanically resistant and elastic membrane. The connective tissue appears as dense bundles of (collagen) fibers. The luminal epithelium (coelothelium) is a single layer of flagellated collar cells.There is no indication that the muscle fibers, which insert on the inner basal lamina of the connective tissue layer are innervated by axons from the basiepithelial nerve plexus.The results agree with previous conclusions concerning tube-foot structure based on transmission electron microscopy, and provide additional information, particularly with regard to the outer and inner epithelia.This investigation was supported by the Sonderforschungsbereich 138 of the Deutsche Forschungsgemeinschaft. The work was carried out at the Friday Harbor Laboratories of the University of Washington. The authors are indebted to the Director, Professor A.O.D. Willows for use of the facilities, and to Drs. Christopher Reed and Tom Schroeder for invaluable instruction and assistance  相似文献   

8.
Otitis media is a group of inflammatory diseases of the middle ear. Acute otitis media and otitis media with effusion (OME) are its two main types of manifestation. Otitis media is common in children and can result in structural alterations in the middle ear which will lead to hearing losses. This work studies the effects of an OME on the sound transmission from the external auditory meatus to the inner ear. The finite element method was applied on the present biomechanical study. The numerical model used in this work was built based on the geometrical information obtained from The visible ear project. The present work explains the mechanisms by which the presence of fluid in the middle ear affects hearing by calculating the magnitude, phase and reduction of the normalized umbo velocity and also the magnitude and phase of the normalized stapes velocity. A sound pressure level of 90 dB SPL was applied at the tympanic membrane. The harmonic analysis was performed with the auditory frequency varying from 100 Hz to 10 kHz. A decrease in the response of the normalized umbo and stapes velocity as the tympanic cavity was filled with fluid was obtained. The decrease was more accentuated at the umbo.  相似文献   

9.
Summary The frequency-place map of the horseshoe bat cochlea was studied with the horseradish peroxidase (HRP) technique involving focal injections into various, physiologically defined regions of cochlear nucleus (CN). The locations of labeled spiral ganglion cells and their termination sites on inner hair cells of the organ of Corti from injections into CN-regions responsive to different frequencies were analyzed in three dimensional reconstructions of the cochlea. Horseshoe bats from different geographical populations were investigated. They emit orientation calls with constant frequency (CF) components around 77 kHz (Rhinolophus rouxi from Ceylon) and 84 kHz (Rhinolophus rouxi from India) and their auditory systems are sharply tuned to the respective CF-components.The HRP-map shows that in both populations: (i) the frequency range around the CF-component of the echolocation signal is processed in the second half-turn of the cochlea, where basilar membrane (BM) is not thickened, secondary spiral lamina (LSS) is still present and innervation density is maximal; (ii) frequencies more than 5 kHz above the CF-component are processed in the first halfturn, where the thickened BM is accompanied by LSS and innervation density is low; (iii) frequencies below the spectral content of the orientation call are represented in apical turns showing no morphological specializations. The data demonstrate that the cochlea of horseshoe bats is normalized to the frequency of the individual specific CF-component of the echolocation call.The HRP-map can account for the overrepresentation of neurons sharply tuned to the CF-signal found in the central auditory system. A comparison of the HRP-map with a map derived with the swollen nuclei technique following loud sound exposure (Bruns 1976b) reveals that the latter is shifted towards cochlear base by about 4 mm. This discrepancy warrants a new interpretation of the functional role of specialized morphological structures of the cochlea within the mechanisms giving rise to the exceptionally high frequency selectivity of the auditory system.Abbreviations AVCN anteroventral CN - BF best frequency - BM basilar membrane - CF constant frequency - CN cochlear nucleus - DCN dorsal CN - FM frequency modulated - HRP horseradish peroxidase - IHC inner hair cell - LSS secondary spiral lamina - OHC outer hair cell - PVCN posteroventral CN - RF resting frequency - RRc Rhinolophus rouxi from Ceylon - RRi Rhinolophus rouxi from India  相似文献   

10.
The developing cochlea of mammals contains a large group of columnar-shaped cells, which together form a structure known as Kölliker’s organ. Prior to the onset of hearing, these inner supporting cells periodically release adenosine 5′-triphosphate (ATP), which activates purinergic receptors in surrounding supporting cells, inner hair cells and the dendrites of primary auditory neurons. Recent studies indicate that purinergic signaling between inner supporting cells and inner hair cells initiates bursts of action potentials in auditory nerve fibers before the onset of hearing. ATP also induces prominent effects in inner supporting cells, including an increase in membrane conductance, a rise in intracellular Ca2+, and dramatic changes in cell shape, although the importance of ATP signaling in non-sensory cells of the developing cochlea remains unknown. Here, we review current knowledge pertaining to purinergic signaling in supporting cells of Kölliker’s organ and focus on the mechanisms by which ATP induces changes in their morphology. We show that these changes in cell shape are preceded by increases in cytoplasmic Ca2+, and provide new evidence indicating that elevation of intracellular Ca2+ and IP3 are sufficient to initiate shape changes. In addition, we discuss the possibility that these ATP-mediated morphological changes reflect crenation following the activation of Ca2+-activated Cl channels, and speculate about the possible functions of these changes in cell morphology for maturation of the cochlea.  相似文献   

11.
Summary An analysis of the ultrastructure of the tube feet of three species of sea urchins (Strongylocentrotus franciscanus, Arbacia lixula and Echinus esculentus) revealed that the smooth muscle, although known to be cholinoceptive, receives no motor innervation.The muscle fibers are attached to a double layer of circular and longitudinal connective tissue which surrounds the muscle layer and contains numerous bundles of collagen fibers. On its outside, the connective tissue cylinder is invested by a basal lamina of the outer epithelium to which numerous nerve terminals are attached. These are part of a nerve plexus which surrounds the connective tissue cylinder. The plexus itself is an extension of a longitudinal nerve that extends the whole length of the tube foot. It is composed of axons, but nerve cell bodies and synapses are conspicuously lacking, suggesting that the axons and terminals derive from cells of the radial nerve. Processes of the epithelial cells penetrate the nerve plexus and attach to the basal lamina. There is no evidence that the epithelial cells function as sensory cells.On the basis of supporting evidence it is suggested that the transmitter released by the nerve terminals diffuses to the muscle cells over a distance of several microns and in doing so affects the mechanical properties of the connective tissue.Supported by the Sonderforschungsbereich 138 of the Deutsche Forschungsgemeinschaft  相似文献   

12.
The tergite nerve N6 of the first abdominal segment of the locust Locusta migratoria contains receptor fibers, from the tympanic organ, and hair sensilla as well as motoric axons. The nerve was axotomized in nymphal instars or adults, and the regeneration of nerve fibers was studied. The sensory fibers regrow and regenerate their projection pattern within the central nervous system. They recognize their specific neuropile areas even after entering the ganglion through different pathways. The receptor fibers of the tympanic organ reestablish synaptic connections to auditory interneurons, even though the physiological characteristics of the interneurons are not fully restored. This regenerative capability contrasts with the lack of regeneration of peripheral structures in locusts, but supports the described plasticity in the auditory system of monaural locusts (Lakes, Kalmring, and Engelhard, 1990). The motor fibers do not regenerate nerves innervating muscles of the body wall.  相似文献   

13.
We have identified a novel cochlear gene, designated OTOR, from a comparative sequence analysis of over 4000 clones from a human fetal cochlear cDNA library. Northern blot analysis of human and chicken organs shows strong OTOR expression only in the cochlea; very low levels are detected in the chicken eye and spinal cord. Otor and Col2A1 are coexpressed in the cartilaginous plates of the neural and abneural limbs of the chicken cochlea, structures analogous to the mammalian spiral limbus, osseous spiral lamina, and spiral ligament, and not in any other tissues in head and body sections. The human OTOR gene localizes to chromosome 20 in bands p11.23-p12.1 and more precisely to STS marker WI-16380. We have isolated cDNAs orthologous to human OTOR in the mouse, chicken, and bullfrog. The encoded protein, designated otoraplin, has a predicted secretion signal peptide sequence and shows a high degree of cross-species conservation. Otoraplin is homologous to the protein encoded by CDRAP/MIA (cartilage-derived retinoic acid sensitive protein/melanoma inhibitory activity), which is expressed predominantly by chondrocytes, functions in cartilage development and maintenance, and has growth-inhibitory activity in melanoma cell lines.  相似文献   

14.
Synaptophysin and synaptobrevin 2 associate closely with packaging and storage of synaptic vesicles and transmitter release, and both play important roles in the development of rat cochlea. We examined the differential expression of synaptophysin and synaptobrevin 2 in the developing Sprague-Dawley rat cochlea, and investigated the relationship between their expression and auditory development. The expression of synaptophysin and synaptobrevin 2 was not observed in Kolliker’s and Corti’s organ at postnatal 1 day (P1) and P5, and the top turn of the cochlea at P10. Expression was detected in the outer spiral bundle (OSB), the inner spiral bundle (ISB), and the medial wall of the Deiters’ cell of the cochlea at P14, and P28, and in the middle or the basal turn of Corti’s organ at P10. Synaptobrevin 2 was expressed in the top of the inner hair cells (IHCs) in Corti’s organ of both P14 and P28 rats. All spiral ganglion neurons (SGNs) were stained at all ages examined. The localization of synaptophysin and synaptobrevin 2 in the cochlea was closely associated with the distribution of nerve fibers and neural activity (the docking and release of synaptic vesicles). Synaptophysin and synaptobrevin 2 were expressed in a dynamic manner during the development of rat cochlea. Their expression differences during the development were in favor of the configuration course constructed between nerve endings and target cells. It also played a key role in the formation of the correct coding of auditory information during auditory system development.  相似文献   

15.
本文介绍了以短吻云南兽为代表的一种耳区结构.它表明在三列齿类爬行动物里已经出现有发育的耳蜗壳以及在其内侧通过的颈内动脉等进步性质,听腔亦趋封闭.云南兽的中耳腔外侧出现了一条曲折的骨质外耳道,侧枕骨突外侧明显的沟可能表明方骨后耳膜之存在.  相似文献   

16.
We investigated directionalities of eardrum vibration and auditory nerve response in anesthetized northern leopard frogs (Rana pipiens pipiens). Simultaneous measures of eardrum velocities and firing rates from 282 auditory nerve fibers were obtained in response to free-field sounds from eight directions in the horizontal plane. Sound pressure at the external surface of the ipsilateral eardrum was kept constant for each presentation direction (± 0.5 dB). Significant effects of sound direction on eardrum velocity were shown in 90% of the cases. Maximum or minimum eardrum velocity was observed more often when sounds were presented from the lateral and posterior fields, or from the anterior and contralateral fields, respectively. Firing rates of 38% of the fibers were significantly affected by sound direction and maximum or minimum firing rate was observed more frequently when sounds were delivered from the lateral fields, or from the anterior and contralateral fields, respectively. Directionality patterns of eardrum velocity and nerve firing also vary with sound frequency. Statistically significant correlation between eardrum velocity and nerve fiber firing rate was demonstrated in only 45% of the fibers, suggesting that sound transmission to the inner ear through extratympanic pathways plays a non-trivial role in the genesis of directionality of auditory nerve responses.Abbreviations CF characteristic frequency - SVL snout-vent length - TM tympanic membrane  相似文献   

17.
Summary The inner ear of the leopard frog,Rana pipiens, receives sound via two separate pathways: the tympanic-columellar pathway and an extratympanic route. The relative efficiency of the two pathways was investigated. Laser interferometry measurements of tympanic vibration induced by free-field acoustic stimulation reveal a broadly tuned response with maximal vibration at 800 and 1500 Hz. Vibrational amplitude falls off rapidly above and below these frequencies so that above 2 kHz and below 300 Hz tympanic vibration is severely reduced. Electrophysiological measurements of the thresholds of single eighth cranial nerve fibers from both the amphibian and basilar papillae in response to pure tones were made in such a way that the relative efficiency of tympanic and extratympanic transmission could be assessed for each fiber. Thresholds for the two routes are very similar up to 1.0 kHz, above which tympanic transmission eventually becomes more efficient by 15–20 dB. By varying the relative phase of the two modes of stimulation, a reduction of the eighth nerve response can be achieved. When considered together, the measurements of tympanic vibration and the measurements of tympanic and extratympanic transmission thresholds suggest that under normal conditions in this species (1) below 300 Hz extratympanic sound transmission is the main source of inner ear stimulation; (2) for most of the basilar papilla frequency range (i.e., above 1.2 kHz) tympanic transmission is more important; and (3) both routes contribute to the stimulation of amphibian papilla fibers tuned between those points. Thus acoustic excitation of the an uran's inner ear depends on a complex interac tion between tympanic and extratympanic sound transmission.Abbreviations dB SPL decibels sound pressure level re: 20 N/ m2 - AP amphibian papilla - BP basilar papilla - BEF best excitatory frequency  相似文献   

18.
19.
The derived middle and inner ears of mammals are the major features distinguishing them from non-mammalian vertebrates. Among them, multituberculate mammals represent an important transitional stage and a groundplan for further therian ear evolution. We present the reconstruction of petrosal features of a new multituberculate from the Late Cretaceous of Inner Mongolia (China) based on high resolution computed tomography and three-dimensional imaging analysis. Besides questioning some aspects of previous interpretations, this study reveals a combination of derived and primitive characters, such as a therian-like vascular and nervous pattern and internal acoustic meatus, and a monotreme-like inner ear, but with a derived semicircular canal planarity. The possible presence of a primary bony lamina for the basilar membrane could demonstrate that the first step in the elaboration of a coiled cochlea was already present in multituberculates. Auditory capabilities can be deduced for this animal, which was certainly terrestrial and possibly fossorial.  相似文献   

20.
本文详细描述了菱臼齿兽耳区各个部分的基本结构;并指出了耳区结构与某些啮齿类的相似性,以及中耳鼓泡组成成份与戈壁(犭亚)兽(Anagale gobiensis)的区别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号