首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John JA  Key B 《Chemical senses》2003,28(9):773-779
During development, primary olfactory axons typically grow to their topographically correct target zone without extensive remodelling. Similarly, in adults, new axons arising from the normal turnover of sensory neurons essentially project to their target without error. In the present study we have examined axon targeting in the olfactory pathway following extensive chemical ablation of the olfactory neuroepithelium in the P2-tau:LacZ line of mice. These mice express LacZ in the P2 subpopulation of primary olfactory neurons whose axons target topographically fixed glomeruli on the medial and lateral surfaces of the olfactory bulb. Intraperitoneal injections of dichlobenil selectively destroyed the sensory neuroepithelium of the nasal cavity without direct physical insult to the olfactory neuron pathway. Primary olfactory neurons regenerated and LacZ staining revealed the trajectory of the P2 axons. Rather than project solely to their topographically appropriate glomeruli, the regenerating P2 axons now terminated in numerous inappropriate glomeruli which were widely dispersed over the olfactory bulb. While these errors in targeting were refined over time, there was still considerable mis-targeting after four months of regeneration.  相似文献   

2.
Each primary olfactory neuron stochastically expresses one of approximately 1000 odorant receptors. The total population of these neurons therefore consists of approximately 1,000 distinct subpopulations, each of which are mosaically dispersed throughout one of four semi-annular zones in the nasal cavity. The axons of these different subpopulations are initially intermingled within the olfactory nerve. However, upon reaching the olfactory bulb, they sort out and converge so that axons expressing the same odorant receptor typically target one or two glomeruli. The spatial location of each of these approximately 1800 glomeruli are topographically-fixed in the olfactory bulb and are invariant from animal to animal. Thus, while odorant receptors are expressed mosaically by neurons throughout the olfactory neuroepithelium their axons sort out, converge and target the same glomerulus within the olfactory bulb. How is such precise and reproducible topographic targeting generated? While some of the mechanisms governing the growth cone guidance of olfactory sensory neurons are understood, the cues responsible for homing axons to their target site remain elusive.  相似文献   

3.
The functional activity of the neural cell adhesion molecule N-CAM can be modulated by posttranslational modifications such as glycosylation. For instance, the long polysialic acid side chains of N-CAM alter the adhesion properties of the protein backbone. In the present study, we identified two novel carbohydrates present on N-CAM, NOC-3 and NOC-4. Both carbohydrates were detected on N-CAM glycoforms expressed by subpopulations of primary sensory olfactory neurons in the rat olfactory system. Based on the expression of NOC-3 and NOC-4 and the olfactory marker protein (OMP), four independent subpopulations of primary sensory olfactory neurons were characterized. These neurons expressed: both NOC-3 and NOC-4 but not OMP; both NOC-4 and OMP but not NOC-3; NOC-3, NOC-4, and OMP together; and OMP alone. The NOC-3- and NOC-4-expressing neurons were widely dispersed in the olfactory neuroepithelium lining the nasal cavity. The axons of NOC-4 expressing neurons innervated all glomeruli in the olfactory bulb, whereas the NOC-3 expressing axons terminated in a discrete subset of glomeruli scattered throughout the whole olfactory bulb. We propose that both NOC-3 and NOC-4 are part of a chemical code of olfactory neurons which is used in establishing the topography of connections between the olfactory neuroepithelium and the olfactory bulb. © 1997 John Wiley & Sons, Inc. J Neurobiol 32 : 659–670, 1997  相似文献   

4.
The Src-family tyrosine kinases p59fyn and pp60c-src are localized on axons of the mouse olfactory nerve during the initial stages of axonal growth, but their functional roles remain to be defined. To study the role of these kinases, we analyzed the trajectory of the olfactory nerve in E11.5 homozygous null mutant mice lacking single src or fyn genes and double mutants lacking both genes. Primary olfactory axons of single and double mutants exited the olfactory epithelium and projected toward the telencephalon, but displayed differences in fasciculation. The fyn-minus olfactory nerve had significantly more fascicles than the src-minus nerve. Most strikingly, the primary olfactory nerve of src/fyn double mutants showed the greatest degree of defasciculation. These defects, identified by NCAM labeling, were not due to apparent changes in the size of the olfactory epithelium. With the exception of the src-minus mice, which had fewer fascicles than the wild type, no obvious differences were observed in coalescence of vomeronasal axons from mutant mice. The mesenchyme of the double and single mutants exhibited only subtle changes in laminin and fibronectin staining, indicating that the adhesive environment of the mesenchyme may contribute in part to defects in fasciculation. The results suggest that signaling pathways mediated by p59fyn and pp60c-src contribute to the appropriate fasciculation of axons in the nascent olfactory system, and comprise partially compensatory mechanisms for axonal adhesion and guidance. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 53–63, 1998  相似文献   

5.
Cell surface carbohydrates, both in the olfactory system and elsewhere, have been proposed to play critical roles in axon guidance and targeting. Recent studies have used plant lectins to study the heterogeneous distribution of carbohydrates in the olfactory system. One lectin, Dolichos biflorus agglutinin (DBA), heterogeneously labels subsets of glomeruli. In the olfactory epithelium DBA labeled a subset of olfactory sensory neurons (OSNs) including their cilia, dendrites, and somata. OSN axons were also labeled and readily observed in the olfactory nerve and bulb. The patterns of glomerular innervation by DBA labeled (DBA(+)) axons were diverse; some glomeruli contained many labeled axons, while others contained few or no labeled axons. To characterize the heterogeneous innervation of glomeruli, we double labeled olfactory bulbs with DBA and an antibody to olfactory marker protein (OMP). OMP colocalized in most, but not all, DBA(+) axons. To determine if those axons that did not express OMP were immature, we double labeled olfactory bulbs with DBA and anti-GAP-43. GAP-43 rarely colocalized with DBA, suggesting that DBA(+) axons are not, as a population, immature. Triple labeling with all three markers revealed a small subset of DBA(+) axons which did not express either OMP or GAP-43. Electron microscopy established that DBA labels axons in the olfactory nerve and DBA-labeled axons form typical glomerular axodendritic synapses.  相似文献   

6.
The mechanisms that underlie axonal pathfinding of vomeronasal neurons from the vomeronasal organ (VNO) in the periphery to select glomeruli in the accessory olfactory bulb (AOB) are not well understood. Neuropilin-2, a receptor for secreted semaphorins, is expressed in V1R- and V3R-expressing, but not V2R-expressing, postnatal vomeronasal neurons. Analysis of the vomeronasal nerve in neuropilin-2 (npn-2) mutant mice reveals pathfinding defects at multiple choice points. Vomeronasal sensory axons are severely defasciculated and a subset innervates the main olfactory bulb (MOB). While most axons of V1R-expressing neurons reach the AOB and converge into distinct glomeruli in stereotypic locations, they are no longer restricted to their normal anterior AOB target zone. Thus, Npn-2 and candidate pheromone receptors play distinct and complementary roles in promoting the wiring and patterning of sensory neurons in the accessory olfactory system.  相似文献   

7.
During embryonic development, olfactory sensory neurons extend axons that form synapses with the dendrites of projection neurons in glomeruli of the olfactory bulb (OB). The glycosyltransferase beta3GnT1 regulates the expression of 1B2-reactive lactosamine glycans that are mosaically distributed among glomeruli. In newborn beta3GnT1-/- mice, lactosamine expression is lost, and many glomeruli fail to form. To determine the role of lactosamine in OB targeting, we analyzed the trajectories of specific OR axon populations and their reactivity with 1B2 in beta3GnT1-/- mice. mI7 axons and P2 axons, both of which are weakly 1B2+ in wild-type mice, fail to grow to their normal positions in the glomerular layer during early postnatal development and never recover in adult mutant mice. In contrast, many M72 axons, which are always lactosamine negative in wild-type mice, survive but are misguided to the extreme anterior OB in neonatal mutant mice and persist as heterotypic glomeruli, even in adult null mice. These results show that the loss of lactosamine differentially affects each OR population. Those that lose their normal expression of lactosamine fail to form stable connections with mitral and tufted cells in the OB, disappear during early postnatal development, and do not recover in adults. Neurons that are normally lactosamine negative, survive early postnatal degeneration in beta3GnT1-/- mice but extend axons that converge on inappropriate targets in the mutant OB.  相似文献   

8.
Primary olfactory neurons arise from placodal neuroepithelium that is separate from the neuroepithelial plate that forms the neural tube and crest. The axons of these neurons course along a stereotypical pathway and invade the rostral telencephalic vesicle where they induce the formation of the olfactory bulb. In the present study we examined the expression of several extracellular matrix constituents during formation of the olfactory nerve pathway in order to identify putative developmentally significant molecules. Double-label immunofluorescence was used to simultaneously map the trajectory of growing primary olfactory axons by expression of growth associated protein 43 (GAP-43) and the distribution of either laminin, heparan sulfate proteoglycans (HSPG), or chondroitin sulfate proteoglycans (CSPG). At embryonic day 12.5 (E12.5) primary olfactory axons have exited the olfactory neuroepithelium of the nasal pit and formed a rudimentary olfactory nerve. These axons together with migrating neural cells form a large mass outside the rostral surface of the telencephalon. This nerve pathway is clearly defined by a punctate distribution of laminin and HSPG. CSPG is selectively present in the mesenchyme between the olfactory nerve pathway and the nasal pit and in the marginal zone of the telencephalon. At E14.5 primary olfactory axons pierce the telencephalon through gaps that have emerged in the basement membrane. At this age both laminin and HSPG are colocalized with the primary olfactory axons that have entered the marginal zone of the telencephalon. CSPG expression becomes downregulated in this same region while it remains highly expressed in the marginal zone adjacent to the presumptive olfactory bulb. By E16.5 most of the basement membrane separating the olfactory nerve from the telencephalon has degraded, and there is direct continuity between the olfactory nerve pathway and the central nervous system. This strict spatiotemporal regulation of extracellular matrix constituents in the olfactory nerve pathway supports an important role of these molecules in axon guidance. We propose that laminin and HSPG are expressed by migrating olfactory Schwann cells in the developing olfactory nerve pathway and that these molecules provide a conducive substrate for axon growth between the olfactory neuroepithelium and the brain. CSPG in the surrounding mesenchyme may act to restrict axon growth to within this pathway. The regional degradation of the basement membrane of the telencephalon and the downregulation of CSPG within the marginal zone probably facilitates the passage of primary olfactory axons into the brain to form the presumptive nerve fiber layer of the olfactory bulb. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The nerve fiber layer of the opossum olfactory bulb, formed by axons originating from bipolar neurons in the olfactory epithelium, and glomeruli are intensely immunoreactive for olfactory marker protein. The surrounding extra-glomerular neuropil contains numerous periglomerular neurons immunoreactive for either tyrosine hydroxylase or corticotropin releasing factor. Dendrites of both types of immunoreactive neurons extend into the intraglomerular neuropil. CRF-immunoreactive neurons are fewer in number than TH-immunoreactive neurons and are observed primarily in the periglomerular region. Occasional, scattered TH-immunoreactive neurons are seen in the deeper layers of the olfactory bulb.  相似文献   

10.
The olfactory marker protein has been localized, by means of immunohistochemical techniques in the primary olfactory neurons of mice. The olfactory marker protein is not present in the staminal cells of the olfactory neuroepithelium, and the protein may be regarded as indicative of the functional stage of the neurons. Our data indicate that the olfactory marker protein is present in the synaptic terminals of the olfactory neurons at the level of the olfactory bulb glomeruli. The postsynaptic profiles of both mitral and periglomerular cells are negative.  相似文献   

11.
Re-innervation of the olfactory bulb was investigated after transection of the olfactory nerve using monoclonal antibody RB-8 to assess whether rhinotopy of the primary olfactory projection is restored. In normal animals RB-8 heavily stains the axons, and their terminals, that project from the ventrolateral olfactory epithelium onto glomeruli of the ventrolateral bulb (termed RB-8(+)). In contrast, axons from dorsomedial epithelium are unlabeled (RB-8(-)) and normally terminate in the dorsomedial bulb. Sprague-Dawley rats underwent unilateral olfactory nerve transection and survived for 6 weeks prior to perfusion, sectioning and immunostaining with RB-8. Nerve lesion does not shift the position of the boundary between RB-8(+) and RB-8(-) regions of the epithelium. However, following transection and bulb re-innervation, the distribution of RB-8(+) and RB-8(-) axons is markedly abnormal. First, in all 10 experimental animals RB-8(-) axons displace RB-8(+) axons from anterior glomeruli. Furthermore, the usual target of the RB-8(-) fibers, i.e. the dorsomedial bulb at more posterior levels of the bulb, remains denervated, judging by the lack of staining with antibodies that label axons derived from all epithelial zones. Finally, RB-8(+) fibers invade foreign territory in the dorsolateral bulb on the lesioned side in some cases. The shifts in terminal territory in the bulb after transection contrast with the restoration of the normal zonal patterning of the projection after recovery from methyl bromide lesion, but is consistent with reports of mistargeting by a receptor-defined subset of neurons after transection.  相似文献   

12.
The expression of the neural cell adhesion molecules N-CAM and L1 was investigated in the olfactory system of the mouse using immunocytochemical and immunochemical techniques. In the olfactory epithelium, globose basal cells and olfactory neurons were stained by the polyclonal N-CAM antibody reacting with all three components of N-CAM (N-CAM total) in their adult and embryonic states. Dark basal cells and supporting cells were not found positive for N-CAM total. The embryonic form of N-CAM (E-N-CAM) was only observed on the majority of globose basal cells, the precursor cells of olfactory neurons, and some neuronal elements, probably immature neurons, since they were localized adjacent to the basal cell layer. Differentiated neurons in the olfactory epithelium did not express E-N-CAM. In contrast to N-CAM total, the 180-kDa component of N-CAM (N-CAM180) and E-N-CAM, L1 was not detectable on cell bodies in the olfactory epithelium. L1 and N-CAM180 were strongly expressed on axons leaving the olfactory epithelium. Olfactory axons were also labeled by antibodies to N-CAM180 and L1 in the lamina propria and the nerve fiber and glomerular layers of the olfactory bulb, but only some axons showed a positive immunoreaction for E-N-CAM. Ensheathing cells in the olfactory nerve were observed to bear some labeling for N-CAM total, L1, and N-CAM180, but not E-N-CAM. In the olfactory bulb, L1 was not present on glial cells. In contrast, N-CAM180 was detectable on some glia and N-CAM total on virtually all glia. Glia in the nerve fiber layer were labeled by E-N-CAM antibody only at the external glial limiting membrane. In the glomerular layer, E-N-CAM expression was particularly pronounced at contacts between olfactory axons and target cells. The presence of E-N-CAM in the adult olfactory epithelium and bulb was confirmed by Western blot analysis. The continued presence of E-N-CAM in adulthood on neuronal precursor cells, a subpopulation of olfactory axons, glial cells at the glia limitans, and contacts between olfactory axons and their target cells indicates the retention of embryonic features in the mammalian olfactory system, which may underlie its remarkable regenerative capacity.  相似文献   

13.
Cell surface glycoconjugates have been implicated in the growth and guidance of subpopulations of primary olfactory axons. While subpopulations of primary olfactory neurons have been identified by differential expression of carbohydrates in the rat there are few reports of similar subpopulations in the mouse. We have examined the spatiotemporal expression pattern of glycoconjugates recognized by the lectin from Wisteria floribunda (WFA) in the mouse olfactory system. In the developing olfactory neuroepithelium lining the nasal cavity, WFA stained a subpopulation of primary olfactory neurons and the fascicles of axons projecting to the target tissue, the olfactory bulb. Within the developing olfactory bulb, WFA stained the synaptic neuropil of the glomerular and external plexiform layers. In adults, strong expression of WFA ligands was observed in second-order olfactory neurons as well as in neurons in several higher order olfactory processing centres in the brain. Similar, although distinct, staining of neurons in the olfactory pathway was detected with Dolichos biflorus agglutinin. These results demonstrate that unique subpopulations of olfactory neurons are chemically coded by the expression of glycoconjugates. The conserved expression of these carbohydrates across species suggests they play an important role in the functional organization of this region of the nervous system.  相似文献   

14.
The septal organ represents one of the three chemosensory subsystems found in most vertebrate species. Analyzing the projection pattern of septal organ neurons using the OMP-GFP transgenic mouse line revealed that axons navigate in highly variable fiber tracks across the main olfactory epithelium toward the main olfactory bulb. All septal organ axons cross through the cribriform plate at a spatially defined site and terminate exclusively in the posterior, ventromedial aspect of the bulb. Here, one portion of axons forms a dense network on the medial side where they apparently enter glomeruli which are mainly innervated by axons of olfactory sensory neurons from the main olfactory epithelium. Another significant portion of the axons targets a few glomeruli which appear to receive input exclusively from the septal organ neurons.  相似文献   

15.
In mammals, conventional odorants are detected by OSNs located in the main olfactory epithelium of the nose. These neurons project their axons to glomeruli, which are specialized structures of neuropil in the olfactory bulb. Within glomeruli, axons synapse onto dendrites of projection neurons, the mitral and tufted (M/T) cells. Genetic approaches to visualize axons of OSNs expressing a given odorant receptor have proven very useful in elucidating the organization of these projections to the olfactory bulb. Much less is known about the development and connectivity of the lateral olfactory tract (LOT), which is formed by axons of M/T cells connecting the olfactory bulb to central neural regions. Here, we have extended our genetic approach to mark M/T cells of the main olfactory bulb and their axons in the mouse, by targeted insertion of IRES-tauGFP in the neurotensin locus. In NT-GFP mice, we find that M/T cells of the main olfactory bulb mature and project axons as early as embryonic day 11.5. Final innervation of central areas is accomplished before the end of the second postnatal week. M/T cell axons that originate from small defined areas within the main olfactory bulb, as visualized by localized injections of fluorescent tracers in wild-type mice at postnatal days 1 to 3, follow a dual trajectory: a branch of tightly packed axons along the dorsal aspect of the LOT, and a more diffuse branch along the ventral aspect. The dorsal, but not the ventral, subdivision of the LOT exhibits a topographical segregation of axons coming from the dorsal versus ventral main olfactory bulb. The NT-GFP mouse strain should prove useful in further studies of development and topography of the LOT, from E11.5 until 2 weeks after birth.  相似文献   

16.
Transregulation of erbB expression in the mouse olfactory bulb.   总被引:2,自引:0,他引:2  
Previously, we have shown that erbB-3 expression is restricted to the ensheathing cells of the olfactory nerve layer, while erbB-4 is found in the periglomerular and mitral/tufted cells of the olfactory bulb and in cells coming out from the rostral migratory stream of the subependymal layer. In the present work, we have treated adult mice with zinc sulfate intranasal irrigation and analyzed erbB-3 and erbB-4 expression in the deafferented olfactory bulb. Following treatment, olfactory axons undergo degeneration, as indicated by the loss of OMP expression in the deafferented olfactory bulb. The thickness of the olfactory nerve layer is reduced, but the specific intensity of erbB-3 labeling in the remaining olfactory nerve layer is increased with respect to control. Interestingly, following deafferentation, erbB-4 immunoreactivity decreases specifically in cell types that normally make synaptic contacts with primary olfactory neurons in the glomeruli, i.e. periglomerular and mitral/tufted cells. Partial lesion of the olfactory epithelium allows regenerative axon growth of olfactory neurons to the olfactory bulb. Following olfactory axon regeneration, erbB-3 and erbB-4 immunoreactivity in the olfactory bulb is similar to control. Thus, like tyrosine hydroxylase, the down regulation of erbB-4 expression in the periglomerular cells is reversible.  相似文献   

17.
Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood group H carbohydrate is expressed by primary sensory neurons in both the main and accessory olfactory systems while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the absence of blood group H carbohydrate resulted in the delayed maturation of the glomerular layer of the main olfactory bulb. In addition, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice caused mis-routing of axons in the glomerular layer of the main olfactory bulb and led to exuberant growth of vomeronasal axons in the accessory olfactory bulb. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development of the olfactory nerve pathways.  相似文献   

18.
Three monoclonal antibodies specific for different carbohydrate antigens were used to analyze the development of the olfactory system in rats. CC2 antibodies react with a subset of main olfactory neurons, their axons, and terminals in the olfactory bulb. CC2 antigens are expressed on dorsomedial neurons in the olfactory epithelium (OE) from embryonic (E) day 15 to adults. In the olfactory bulb (OB), only dorsomedially located glomeruli express CC2 glycoconjugates from postnatal day (P) 2 to adults. Thus CC2 defines a dorsomedially organized projection that is established early in embryonic development and continues in adults. P-Path antibodies react with antigens that are expressed on the olfactory nerve in embryos, and are also detected on cell bodies in the neuroepithelium and in glomeruli of the OB at P2. At P14, P-Path staining is weaker, but remains present on many cells in the epithelium and in many glomeruli in the bulb. Postnatally, P-Path immunostaining continues to decrease in most regions of the OE and OB. At P35 and afterwards, only a few P-Path-positive neuronal cells can be detected in the OE. Furthermore, after P35 only two groups of glomeruli in the OB are P-Path immunoreactive. One is situated adjacent to the accessory olfactory bulb (AOB) at the dorsocaudal surface of the OB. The other is adjacent to the AOB at the ventrocaudal surface of the OB. Thus, in adults, P-Path glycoconjugates are expressed in neurons and axons that project only to a specific subset of caudal glomeruli of the OB. Monoclonal antibody 1B2, reacts with β-galactose-terminating glycolipids and glycoproteins. At P2, 1B2 immunoreactivity is seen on a subset of cell bodies that are distributed throughout the OE and is expressed in most glomeruli in the OB at this age. By P35 and in adults, 1B2 continues to be expressed on a subset of neurons in the OE that project to only a small subset of glomeruli in the OB. Unlike CC2 and P-Path antigens that define specific groups of glomeruli, 1B2-immunoreactive glomeruli do not have a detectable spatial pattern. It is more likely that 1B2 antigens define a specific stage in the maturation of connections between the OE and OB.  相似文献   

19.
Three monoclonal antibodies specific for different carbohydrate antigens were used to analyze the development of the olfactory system in rats. CC2 antibodies react with a subset of main olfactory neurons, their axons, and terminals in the olfactory bulb. CC2 antigens are expressed on dorsomedial neurons in the olfactory epithelium (OE) from embryonic (E) day 15 to adults. In the olfactory bulb (OB), only dorsomedially located glomeruli express CC2 glycoconjugates from postnatal day (P) 2 to adults. Thus CC2 defines a dorsomedially organized projection that is established early in embryonic development and continues in adults. P-Path antibodies react with antigens that are expressed on the olfactory nerve in embryos, and are also detected on cell bodies in the neuroepithelium and in glomeruli of the OB at P2. At P14, P-Path staining is weaker, but remains present on many cells in the epithelium and in many glomeruli in the bulb. Postnatally, P-Path immunostaining continues to decrease in most regions of the OE and OB. At P35 and afterwards, only a few P-Path-positive neuronal cells can be detected in the OE. Furthermore, after P35 only two groups of glomeruli in the OB are P-Path immunoreactive. One is situated adjacent to the accessory olfactory bulb (AOB) at the dorsocaudal surface of the OB. The other is adjacent to the AOB at the ventrocaudal surface of the OB. Thus, in adults, P-Path glycoconjugates are expressed in neurons and axons that project only to a specific subset of caudal glomeruli of the OB. Monoclonal antibody 1B2, reacts with beta-galactose-terminating glycolipids and glycoproteins. At P2, 1B2 immunoreactivity is seen on a subset of cell bodies that are distributed throughout the OE and is expressed in most glomeruli in the OB at this age. By P35 and in adults, 1B2 continues to be expressed on a subset of neurons in the OE that project to only a small subset of glomeruli in the OB. Unlike CC2 and P-Path antigens that define specific groups of glomeruli, 1B2-immunoreactive glomeruli do not have a detectable spatial pattern. It is more likely that 1B2 antigens define a specific stage in the maturation of connections between the OE and OB.  相似文献   

20.
Lin DM  Wang F  Lowe G  Gold GH  Axel R  Ngai J  Brunet L 《Neuron》2000,26(1):69-80
Olfactory neurons expressing the same odorant receptor converge to a small number of glomeruli in the olfactory bulb. In turn, mitral and tufted cells receive and relay this information to higher cortical regions. In other sensory systems, correlated neuronal activity is thought to refine synaptic connections during development. We asked whether the pattern of connections between olfactory sensory axons and mitral cell dendrites is affected when odor-evoked signaling is eliminated in mice lacking functional olfactory cyclic nucleotide-gated (CNG) channels. We demonstrate that olfactory sensory axons converge normally in the CNG channel mutant background. We further show that the pruning of mitral cell dendrites, although slowed during development, is ultimately unperturbed in mutant animals. Thus, the olfactory CNG channel-and by inference correlated neural activity--is not required for generating synaptic specificity in the olfactory bulb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号