首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of our study was to determine the relation between alternatively spliced myosin heavy chain (MHC) isoforms and the contractility of smooth muscle. The relative amount of MHC with an alternatively spliced insert in the 5′ (amino terminal) domain was determined on the protein level using a peptide-directed antibody (a25K/50K) raised against the inserted sequence (QGPSFAY). Smooth muscle MHC isoforms of both bladder and myometrium but not nonmuscle MHC reacted with a25/50K. Using a quantitative Western-blot approach the amount of 5′-inserted MHC in rat bladder was detected to be about eightfold higher than in normal rat myometrium. The amount of heavy chain with insert was found to be decreased by about 50% in the myometrium of pregnant rats. Although bladder contained significantly more 5′-inserted MHC than myometrium, apparent maximal shortening velocities (Vmax) were comparable, being 0.138 ± 0.012 and 0.114 ± 0.023 muscle length per second of skinned bladder and normal myometrium fibers, respectively. Phosphorylation of myosin light chain 20 induced by maximal Ca2+/calmodulin activation was the same in bladder and myometrial fibers. These results suggest that the amount of 5′-inserted MHC is not necessarily associated with contractile properties of smooth muscle. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Benign prostatic hyperplasia (BPH) is mainly caused by increased prostatic smooth muscle (SM) tone and volume. SM myosin (SMM) and non‐muscle myosin (NMM) play important roles in mediating SM tone and cell proliferation, but these molecules have been less studied in the prostate. Rat prostate and cultured primary human prostate SM and epithelial cells were utilized. In vitro organ bath studies were performed to explore contractility of rat prostate. SMM isoforms, including SM myosin heavy chain (MHC) isoforms (SM1/2 and SM‐A/B) and myosin light chain 17 isoforms (LC17a/b), and isoform ratios were determined via competitive RT‐PCR. SM MHC and NM MHC isoforms (NMMHC‐A, NMMHC‐B and NMMHC‐C) were further analysed via Western blotting and immunofluorescence microscopy. Prostatic SM generated significant force induced by phenylephrine with an intermediate tonicity between phasic bladder and tonic aorta type contractility. Correlating with this kind of intermediate tonicity, rat prostate mainly expressed LC17a and SM1 but with relatively equal expression of SM‐A/SM‐B at the mRNA level. Meanwhile, isoforms of NMMHC‐A, B, C were also abundantly present in rat prostate with SMM present only in the stroma, while NMMHC‐A, B, C were present both in the stroma and endothelial. Additionally, the SMM selective inhibitor blebbistatin could potently relax phenylephrine pre‐contracted prostate SM. In conclusion, our novel data demonstrated the expression and functional activities of SMM and NMM isoforms in the rat prostate. It is suggested that the isoforms of SMM and NMM could play important roles in BPH development and bladder outlet obstruction.  相似文献   

3.
In smooth muscle cells (SMCs)isolated from rabbit carotid, femoral, and saphenous arteries, relativemyosin isoform mRNA levels were measured in RT-PCR to test forcorrelations between myosin isoform expression and unloaded shorteningvelocity. Unloaded shortening velocity and percent smooth muscle myosinheavy chain 2 (SM2) and myosin light chain 17b(MLC17b) mRNA levels were not significantly different insingle SMCs isolated from the luminal and adluminal regions of thecarotid media. Saphenous artery SMCs shortened significantly faster(P < 0.05) than femoral SMCs and had more SM2 mRNA(P < 0.05) than carotid SMCs and lessMLC17b mRNA (P < 0.001) and higher tissuelevels of SMB mRNA (P < 0.05) than carotid and femoralSMCs. No correlations were found between percent SM2 and percentMLC17b mRNA levels and unloaded shortening velocity in SMCsfrom these arteries. We have previously shown that myosin heavy chain(MHC) SM1/SM2 and SMA/SMB and MLC17a/MLC17b isoform mRNA levels correlate with protein expression for these isoforms in rabbit smooth muscle tissues. Thus we interpret these results to suggest that 1) SMC myosin isoform expression andunloaded shortening velocity do not vary with distance from the lumenof the carotid artery but do vary in arteries located longitudinally within the arterial tree, 2) MHC SM1/SM2 and/orMLC17a/MLC17b isoform expression does notcorrelate with unloaded shortening velocity, and 3)intracellular expression of the MHC SM1/SM2 and MLC17a/MLC17b isoforms is not coregulated.

  相似文献   

4.
Mechanical properties and isoform composition of myosin heavy and light chains were studied in hypertrophying rat urinary bladders. Growth of the bladder was induced by partial ligation of the urethra. Preparations were obtained after 10 days. In maximally activated skinned preparations from the hypertrophying tissue, the maximal shortening velocity and the rate of force development following photolytic release of ATP were reduced by about 20 and 25%, respectively. Stiffness was unchanged. The relative content of the basic isoform of the essential 17 kDa myosin light chain was doubled in the hypertrophied tissue. The expression of myosin heavy chain with a 7 amino acid insert at the 25K/50K region was determined using a peptide-derived antibody against the insert sequence. The relative amount of heavy chain with insert was decreased to 50%, in the hypertrophic tissue. The kinetics of the cross-bridge turn-over in the newly formed myosin in the hypertrophic smooth muscle is reduced, which might be related to altered expression of myosin heavy or light chain isoforms. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Nonmuscle and smooth muscle myosin isoforms in bovine endothelial cells   总被引:3,自引:0,他引:3  
A panel of monoclonal antibodies, specific for human platelet (NM-A9, NM-F6, and NM-G2) and for bovine smooth muscle (SM-E7) myosin heavy chains (MHC), were used to study the composition and the distribution of myosin isoforms in bovine endothelial cells (EC), in vivo and in vitro. Using indirect and double immunofluorescence techniques, we have found that in the intact aortic endothelium there is expression of nonmuscle MHC (NM-MHC), exclusively. By contrast, hepatic sinusoidal endothelium as well as cultured bovine aortic EC (BAEC) in the subconfluent phase of growth show coexistence of NM- and smooth muscle MHC (SM-MHC) isoforms. SM myosin immunoreactivity disappears when cultured BAEC become confluent. In this phase of cell growth, NM-MHC isoforms are localized differently within the cells, i.e., in the cytoplasm around the nucleus or in the cortical, submembranous region of EC cytoplasm. A third type of intracellular distribution of NM-MHC immunoreactivity was evident in the cell periphery of binucleated, confluent BAEC. These data indicate that (1) several myosin isoforms are differently distributed in bovine endothelia; and (2) SM myosin expression and the specific subcellular localization of NM myosin isoforms within EC might be regulated by cell-cell interactions.  相似文献   

6.
Summary— The distribution of smooth muscle (SM)-type myosin heavy chain isoforms in several bovine muscular and non-muscular (NM) tissues was evaluated by immunofluorescence tests using monoclonal antibodies SM-E7, reactive with 204 (SM1) and 200 (SM2) kDa isoforms, and SM-F11, specific for SM2 isoform. SM-E7 reacted equally with vascular, respiratory and intestinal SM tissues, whereas SM-F11 stained heterogeneously SM cells in the various muscular systems examined and in some peculiar tissues was unreactive (perisinusoidal cells of hepatic lobule, pulmonary interstitial cells and intestinal muscularis mucosae) or uniquely reactive (nerve cells). On the whole, our findings indicate that SM1 and SM2 isoforms are unequally distributed at the cellular level in various SM and NM tissues and support previous results obtained with tissue extracts and electrophoretic procedures.  相似文献   

7.
We tested the hypothesis that slowing of shortening velocity generated by type IIB fibers from hindlimb-unweighted (HU) rats resulted from a reduced ATPase activity and/or a reduction in the relative content of myosin light chain 3f isoform content (MLC3f). After 2, 3, and 4 wk of HU, maximal unloaded shortening velocity (Vo) of single permeabilized semimembranosus muscle fibers was determined by the slack test. Subsequently, the myosin heavy chain and the relative content of MLC were determined by SDS-PAGE. The ratio of MLC3f to MLC2f was determined by densitometric analysis. In addition, myofibrils were prepared from permeabilized fibers (soleus and semimembranosus muscles) and assayed for resting myosin ATPase and Ca2+-activated myosin ATPase. After HU, Vo declined by 28–40% and the MLC3f/MLC2f ratio decreased by 32 to 48%. A significant correlation between the relative amount of MLC3f and Vo was found (r = 0.48, P < 0.05). Resting myosin ATPase rates were not different between myofibrils prepared from corresponding muscles of control and HU rats (P = 0.86). Ca2+-activated myosin ATPase activities also were not different between myofibrils prepared from corresponding muscles of control and HU rats (P = 0.13). These data suggest that the slowing of maximal unloaded shortening velocity in type IIB fibers with HU is, at least in part, due to a relative change in the essential light chain composition, a decrease in the relative amount of MLC3f and most likely a concomitant increase in MLC1f. However, this reduction in Vo is independent of myosin ATPase activity. unloading shortening velocity; myosin light chain 3f  相似文献   

8.
The differentiation patterns of smooth muscle cells (SMC) in rabbit bladder during development and in the hypertrophic response to partial outflow obstruction induced in adult animals were evaluated by biochemical and immunochemical techniques and by using a panel of monoclonal antibodies specific for desmin, vimentin, α-actin of smooth muscle (SM) type, SM myosin, and nonmuscle (NM) myosin isoforms. Desmin and SM α-actin were homogeneously distributed in SMC of developing, adult, and obstructed bladders. Conversely, marked changes in the ratio and antigenicity of SM myosin isoforms were observed by SDS electrophoresis and Western blotting, respectively. In particular, the 205 K (SM1) isoform was down-regulated with development whereas the 200 K (SM2) isoform was up-regulated around 7 days after birth and down-regulated in the obstructed bladder. Vimentin was expressed in SMC of the fetal bladder and declined markedly during postnatal, physiological hypertrophy of SMC, which occurs concomitantly with diminution of DNA synthesis. This polypeptide became detectable, however, in SMC of obstructed bladders. The 196 K (NM) myosin isoform recognized by NM-A9 antibody, present only in endothelium of blood vessels and in mucosa of normal fetal and adult bladders, became expressed in detrusor muscle, when SMC underwent a process of pathological hypertrophy. The reexpression of vimentin and the de novo appearance of NM myosin isoform in hypertrophic bladders can be reversed when the tissue mass is reduced, such as in bladders after 1-month recovery from partial obstruction. Thus, a specific NM myosin isoform can be used as a marker of SMC hypertrophy in obstructed bladder. In addition, the combined use of anti-vimentin and NM-A9 antibodies can distinguish between SMC which are in the physiological or in the pathological condition of adaptive bladder hypertrophy.  相似文献   

9.
The Ca2+ activation mechanism of the longitudinal body wall muscles of Parastichopus californicus (sea cucumber) was studied using skinned muscle fiber bundles. Reversible phosphorylation of the myosin light chains correlated with Ca2+-activated tension and relaxation. Pretreatment of the skinned fibers with ATPγS and high Ca2+ (10-5M) resulted in irreversible thiophosphorylation of the myosin light chains and activation of a Ca2+ insensitive tension. In contrast, pretreatment with low Ca2+ (10-8M) and ATPγS results in no thiophosphorylation of the myosin light chains or irreversible activation of tension. These results are consistent with a Ca2+-sensitive myosin light chain kinase/phosphatase system being responsible for the activation of the muscle. Other agents known to have an effect upon the Ca2+-activated tension in skinned vertebrate smooth muscle fibers (trifluoperazine, catalytic subunit of the cyclic AMP-dependent protein kinase, and calmodulin) did not have an effect on myosin light chain phosphorylation or Ca2+-activated tension. These results suggest a different type of myosin light chain kinase than is found in vertebrate smooth muscle is responsible for the activation of parastichopus longitudinal body wall muscle.  相似文献   

10.
Binding of the utmost N-terminus of essential myosin light chains (ELC) to actin slows down myosin motor function. In this study, we investigated the binding constants of two different human cardiac ELC isoforms with actin. We employed circular dichroism (CD) and surface plasmon resonance (SPR) spectroscopy to determine structural properties and protein–protein interaction of recombinant human atrial and ventricular ELC (hALC-1 and hVLC-1, respectively) with α-actin as well as α-actin with alanin-mutated ELC binding site (α-actinala3) as control. CD spectroscopy showed similar secondary structure of both hALC-1 and hVLC-1 with high degree of α-helicity. SPR spectroscopy revealed that the affinity of hALC-1 to α-actin (KD = 575 nM) was significantly (p < 0.01) lower compared with the affinity of hVLC-1 to α-actin (KD = 186 nM). The reduced affinity of hALC-1 to α-actin was mainly due to a significantly (p < 0.01) lower association rate (kon: 1018 M−1 s−1) compared with kon of the hVLC-1/α-actin complex interaction (2908 M−1 s−1). Hence, differential expression of ELC isoforms could modulate muscle contractile activity via distinct α-actin interactions.  相似文献   

11.
We report a novel isoform of non-muscle myosin II-C (NM II-C), NM II-C2, that is generated by alternative splicing of an exon, C2, encoding 41 amino acids in mice (33 in humans). The 41 amino acids are inserted into loop 2 of the NM II-C heavy chain within the actin binding region. Unlike most vertebrate non-muscle and smooth muscle myosin IIs, baculovirus-expressed mouse heavy meromyosin (HMM) II-C2 demonstrates no requirement for regulatory myosin light chain (MLC20) phosphorylation for maximum actin-activated MgATPase activity or maximum in vitro motility as measured by the sliding actin filament assay. In contrast, noninserted HMM II-C0 and another alternatively spliced isoform HMM II-C1, which contains 8 amino acids inserted into loop 1, are dependent on MLC20 phosphorylation for both actin-activated MgATPase activity and in vitro motility (Kim, K. Y., Kovacs, M., Kawamoto, S., Sellers, J. R., and Adelstein, R. S. (2005) J. Biol. Chem. 280,22769 -22775). HMM II-C1C2, which contains both the C1 and C2 inserts, does not require MLC20 phosphorylation for full activity similar to HMM II-C2. These constitutively active C2-inserted isoforms of NM II-C are expressed only in neuronal tissue. This is in contrast to NM II-C1 and NM II-C0, both of which are ubiquitously expressed. Full-length NM II-C2-GFP expressed in COS-7 cells localizes to filaments in interphase cells and to the cytokinetic ring in dividing cells.Mammalian non-muscle myosin IIs (NM IIs)2 belong to the conventional Class II myosins and are hexameric proteins composed of two heavy chains and two pairs of light chains, referred as the 20-kDa regulatory myosin light chain (MLC20) and the 17-kDa essential myosin light chain (MLC17). These myosins self-associate through their tail regions to form bipolar filaments that pull on actin filaments to produce force to drive important cellular functions such as cytokinesis, cell polarity, and cell migration (1-4). Three isoforms of the non-muscle myosin heavy chain (NMHC), II-A, II-B, and II-C, have been identified in vertebrates. They are products of three different genes, MYH9 (5, 6), MYH10 (6), and MYH14 (7, 8), respectively, in humans. It is well established that the enzymatic activity of these myosins is regulated by phosphorylation of MLC20, which is catalyzed by a number of enzymes, including myosin light chain kinase (MLCK), and Rho kinase (9-14).Alternative splicing of pre-mRNA of NMHC II genes generates multiple mRNAs to enhance protein diversity in the NM II family. Work from this laboratory and others (8, 15-18) has established that both NMHC II-B and II-C undergo alternative splicing to generate several isoforms. In the case of NMHC II-B, 10 amino acids are incorporated into loop 1 at amino acid 212 (NMHC II-B1), and 21 amino acids are inserted into loop 2 at amino acid 622 (NMHC II-B2; see Ref. 15). These isoforms have been expressed as proteins, and their biochemical and functional importance has been studied extensively (19-22). Recently, it has been reported that baculovirus-expressed heavy meromyosin (HMM) II-B2 lacks actin-activated MgATPase activity and cannot propel actin filaments in an in vitro motility assay following MLC20 phosphorylation (22) even though HMM II-B0 and II-B1 show normal phosphorylation-dependent activities (21). These two inserted isoforms (NM II-B1 and NM II-B2) are only expressed in neuronal tissues, and the results of ablating each of them and NM II-B in mice have been reported (23-25).For NMHC II-C, an alternative exon encoding 8 amino acids is incorporated into loop 1 at amino acid 227 (NMHC II-C1) at a location homologous to that of the B1 insert. Unlike NMHC II-B1, which is only expressed in neuronal tissue, NMHC II-C1 is found in a variety of tissues such as liver, kidney, testes, brain, and lung (8). The presence of the C1 insert in baculovirus-expressed HMM II-C1 increases both the actin-activated MgATPase activity and in vitro motility of HMM II-C1 compared with HMM II-C0, the noninserted form. The activity of both HMM II-C0 and HMM II-C1 is dependent on MLC20 phosphorylation (26). NM II-C1 has been shown to be expressed in a number of tumor cell lines, and decreasing its expression using small interfering RNA delays a late step in cytokinesis in the lung tumor cell line A549 (27).In this study, we report that an exon encoding 41 amino acids can be incorporated into loop 2 near the actin binding region at amino acid 636 of NMHC II-C in mice. Expression of NM II-C2 is limited to neural tissue in mice. We used the baculovirus system to express all four isoforms of HMM II-C and found that inclusion of the 41 amino acids in loop 2 results in an HMM with an actin-activated MgATPase activity and in vitro motility that are independent of MLC20 phosphorylation.  相似文献   

12.
ATPase (Ca2+ and K+ activated) activity of myosin prepared from muscles of 3–4 week rabbit embryos (EM) is slighly lower than that of adult fast muscle myosin (FM), but in contrast to the less active adult slow muscle myosin (SM) is stable on exposure to pH 9.2. Studies of the time course, by means of Na dodecyl-SO4 polyacrylamide gel electrophoresis, of changes in the pattern of polypeptides released by tryptic digestion show that in this regard EM is closest to SM. The light chain complement of EM appears identical with that of FM rather than of SM or cardiac myosin (CM) by the criteria of coelectrophoresis and removal by 5,5′-dithio-2-dinitrobenzoate treatment of LC2 except that the relative amount of LC3 is less in EM than in FM. The staining pattern of light meromyosin (EMM) paracrystals prepared from EM is distinct from either the FM, SM or CM LMM staining pattern. These studies suggest that different genes are involved in the coding for embryonic and adult heavy chains.  相似文献   

13.
Brain type II Ca2+/calmodulin-dependent protein kinase was found to phoshorylate smooth muscle myosin, incorporating maximally 2 mol of phosphoryl per mol of myosin, exclusively on the 20,000 dalton light chain subunit. After maximal phosphorylation of myosin or the isolated 20,000 dalton light chain subunit by myosin light chain kinase, the addition of type II Ca2+/calmodulin-dependent protein kinase led to no further incorporation indicating the two kinases phosphorylated a common site. This conclusion was supported by two dimensional mapping of tryptic digests of myosin phosphorylated by the two kinases. By phosphoamino acid analysis the phosphorylated residue was identified as a serine. The phosphorylation by type II Ca 2+/calmodulin-dependent protein kinase of myosin resulted in enhancement of its actin-activated Mg2+-ATPase activity. Taken together, these data strongly support the conclusion that type II Ca2+/calmodulin-dependent protein kinase phosphorylates the same amino acid residue on the 20,000 dalton light chain subunit of smooth muscle myosin as is phosphorylated by myosin light chain kinase and suggest an alternative mechanism for the regulation of actin-myosin interaction.Abbreviations SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis - EGTA Ethylene Glycol Bis (-amino-ethyl ether)-N,N,N,N-Tetraacetic Acid - DTT Dithiothreitol - LC20 Gizzard Smooth Muscle Phosphorylatable 20 kDa Myosin Light Chain - LC17 Gizzard Smooth Muscle, 17 kDa Myosin Light Chain - H Chain Gizzard Smooth Muscle 200 kDa Myosin Heavy Chain - TPCK L-1-Tosylamido-2-Phenylethyl Chloromethyl Ketone - MOPS 3-(N-morpholino) Propanesulfonic Acid  相似文献   

14.
Lim M  Choi SK  Cho YE  Yeon SI  Kim EC  Ahn DS  Lee YH 《PloS one》2012,7(4):e35177

Aims

The goal of the current study was to determine whether the sphingosine kinase 1 (SK1)/sphingosine-1-phosphate (S1P) pathway is involved in myogenic vasoconstriction under normal physiological conditions. In the present study, we assessed whether endogenous S1P generated by pressure participates in myogenic vasoconstriction and which signaling pathways are involved in SK1/S1P-induced myogenic response under normal physiological conditions.

Methods and Results

We measured pressure-induced myogenic response, Ca2+ concentration, and 20 kDa myosin light chain phosphorylation (MLC20) in rabbit posterior cerebral arteries (PCAs). SK1 was expressed and activated by elevated transmural pressure in rabbit PCAs. Translocation of SK1 by pressure elevation was blocked in the absence of external Ca2+ and in the presence of mechanosensitive ion channel and voltage-sensitive Ca2+ channel blockers. Pressure-induced myogenic tone was inhibited in rabbit PCAs treated with sphingosine kinase inhibitor (SKI), but was augmented by treatment with NaF, which is an inhibitor of sphingosine-1-phosphate phosphohydrolase. Exogenous S1P further augmented pressure-induced myogenic responses. Pressure induced an increase in Ca2+ concentration leading to the development of myogenic tone, which was inhibited by SKI. Exogenous S1P further increased the pressure-induced increased Ca2+ concentration and myogenic tone, but SKI had no effect. Pressure- and exogenous S1P-induced myogenic tone was inhibited by pre-treatment with the Rho kinase inhibitor and NADPH oxidase inhibitors. Pressure- and exogenous S1P-induced myogenic tone were inhibited by pre-treatment with S1P receptor blockers, W146 (S1P1), JTE013 (S1P2), and CAY10444 (S1P3). MLC20 phosphorylation was increased when the transmural pressure was raised from 40 to 80 mmHg and exogenous S1P further increased MLC20 phosphorylation. The pressure-induced increase of MLC20 phosphorylation was inhibited by pre-treatment of arteries with SKI.

Conclusions

Our results suggest that the SK1/S1P pathway may play an important role in pressure-induced myogenic responses in rabbit PCAs under normal physiological conditions.  相似文献   

15.
These experiments were performed totest the hypotheses that myosin light chain 17 (MLC17) aand b isoform expression varies between individual vascular smoothmuscle (SM) cells and that their expression correlates with cellunloaded shortening velocity. Single SM cells isolated from rabbitaorta and carotid arteries were used to measure unloaded shorteningvelocity and subsequently were analyzed via RT-PCR forMLC17 a and b mRNA ratio. The MLC17b/a mRNA andprotein ratios from adjacent tissue sections correlate very well(R2 = 0.68), allowing use of the mRNA ratio topredict the protein ratio. The rabbit MLC17 isoform proteinsequence was found to be similar to, but unique from, the swine, mouse,and chicken sequences. Isolated single SM cells from the aorta andcarotid have resting lengths of 70-280 µm and shorten to33-88 µm after contraction. Isolated cell maximum unloadedshortening velocity is highly variable (0.5-7.5 µm/s) butbecomes more uniform when normalized to initial cell length(0.01-0.05 cell lengths/s). Carotid cells activated in thepresence of okadaic acid (1 µm) have mean maximal unloaded shorteningvelocities not significantly different from carotid cells activatedwithout okadaic acid (0.016 vs. 0.019 cell lengths/s). Resting celllength before activation is significantly correlated with final celllength after unloaded shortening. Neither initial cell length, finalcell length, total cell length change, nor maximum unloaded shorteningvelocity (absolute or normalized) was significantly correlated withsingle-cell MLC17b/a mRNA ratio. These studies wereperformed in isolated single SM cells where unloaded shorteningvelocity and MLC17b/a mRNA ratios were measured in the samecell. In this preparation, the three-dimensional organization andmilieu of the cell is kept intact, but without the intercellularheterogeneity concerns of multicellular preparations. These resultssuggest the MLC17b/a ratio is variable between individual SM cells from the same tissue, but it is not a determinant of unloadedshortening velocity in single SM cells.

  相似文献   

16.
17.
Previous studies have shown that cGMP-dependent protein kinase (PKG) act on several targets in the contractile pathway to reduce intracellular Ca2+ and/or augment RhoA-regulated myosin light chain phosphatase (MLCP) activity and cause muscle relaxation. Recent studies have identified a novel protein M-RIP that associates with MYPT1, the regulatory subunit of MLCP. Herein, we examine whether PKG enhance MLCP activity downstream of Ca2+ and RhoA via phosphorylation of M-RIP in gastric smooth muscle cells. Treatment of permeabilized muscle cells with 10 μM Ca2+ caused an increase in MLC20 phosphorylation and muscle contraction, but had no effect on Rho kinase activity. Activators of PKG (GSNO or cGMP) decreased MLC20 phosphorylation and contraction in response to 10 μM Ca2+, implying existence of inhibitory mechanism independent of Ca2+ and RhoA. The effect of PKG on Ca2+-induced MLC20 phosphorylation was attenuated by M-RIP siRNA. Both GSNO and 8-pCPT-cGMP induced phosphorylation of M-RIP; phosphorylation was accompanied by an increase in the association of M-RIP with MYPT1 and MLCP activity. Taken together, these results provide evidence that PKG induces phosphorylation of M-RIP and enhances its association with MYPT1 to augment MLCP activity and MLC20 dephosphorylation and inhibits muscle contraction, downstream of Ca2+- or RhoA-dependent pathways.  相似文献   

18.
A library of monoclonal antibodies specific for myosin heavy chain (HC) was used to study myosin expression in regenerating fibers. The response to cold injury of slow skeletal ALD muscle previously induced to eliminate SM1 myosin by weight overload was compared to that of its contralateral control. Native gel electrophoresis combined with immunoblotting demonstrated that slow SM1 myosin HC eliminated from hypertrophic muscle reappeared both at the site of active regeneration and unexpectedly, also distal to the site of injury. The regeneration response of hypertrophied muscles was similar to that of the controls. In addition to SM1 myosin HC, ventricular-like and embryonic/fast isoforms were also expressed in both muscles during the early stages of regeneration and disappeared as the muscle fibers matured. These observations demonstrate that regenerating slow muscle fibers reexpress myosins' characteristic of developing muscle irrespective of the myosin phenotype prior to injury. The reappearance of repressed myosin HC in the hypertrophied ALD muscle is consistent with the presence of newly differentiated myonuclei.  相似文献   

19.

Background

During vascular injury, vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts (FBs/MFBs) are exposed to altered luminal blood flow or transmural interstitial flow. We investigate the effects of these two types of fluid flows on the phenotypes of SMCs and MFBs and the underlying mechanotransduction mechanisms.

Methodology/Principal Findings

Exposure to 8 dyn/cm2 laminar flow shear stress (2-dimensional, 2-D) for 15 h significantly reduced expression of α-smooth muscle actin (α-SMA), smooth muscle protein 22 (SM22), SM myosin heavy chain (SM-MHC), smoothelin, and calponin. Cells suspended in collagen gels were exposed to interstitial flow (1 cmH2O, ∼0.05 dyn/cm2, 3-D), and after 6 h of exposure, expression of SM-MHC, smoothelin, and calponin were significantly reduced, while expression of α-SMA and SM22 were markedly enhanced. PD98059 (an ERK1/2 inhibitor) and heparinase III (an enzyme to cleave heparan sulfate) significantly blocked the effects of laminar flow on gene expression, and also reversed the effects of interstitial flow on SM-MHC, smoothelin, and calponin, but enhanced interstitial flow-induced expression of α-SMA and SM22. SMCs and MFBs have similar responses to fluid flow. Silencing ERK1/2 completely blocked the effects of both laminar flow and interstitial flow on SMC marker gene expression. Western blotting showed that both types of flows induced ERK1/2 activation that was inhibited by disruption of heparan sulfate proteoglycans (HSPGs).

Conclusions/Significance

The results suggest that HSPG-mediated ERK1/2 activation is an important mechanotransduction pathway modulating SMC marker gene expression when SMCs and MFBs are exposed to flow. Fluid flow may be involved in vascular remodeling and lesion formation by affecting phenotypes of vascular wall cells. This study has implications in understanding the flow-related mechanobiology in vascular lesion formation, tumor cell invasion, and stem cell differentiation.  相似文献   

20.
While it recently has been demonstrated that it is possible to modify the phenotypic expression of murine dystrophy (dy/dy) (i.e., prevent myofiber loss) by subjecting the extensor digitorum longus (EDL) muscle of 14-day-old dy/dy mice to transient neonatal denervation (Moschella and Ontell, 1987), the mechanism responsible for this phenomenon has not been determined. Since it has been suggested that the effects of dystrophy vary according to fiber type, the fiber type frequency in 100-day-old normal (+/+) and dy/dy EDL muscles subjected to transient neonatal denervation has been determined by immunohistochemical analysis of their myosin heavy chain (MHC) composition. This frequency has been compared with that found in the EDL muscles of 14 -and 100-day-old unoperated +/+ and dy/dy mice, in order to determine whether the reinnervation of transiently denervated neonatal muscle results in a preponderance of fibers of the type that might be spared dystrophic deterioration. In unoperated dy/dy muscle there is a progressive decrease in the frequency and in the absolute number of fibers that express MHC2B, with 100-day-old dy/dy muscles having ~32% of the number of myofibers fibers containing MHC2B as is found in age-matched +/+ muscles. The number of fibers containing the other fast isoforms (MHC2A and MHC2X) is similar in +/+ and dy/dy muscles at this age, indicating that fibers with MHC2B are most affected by the dystrophic process. Reinnervation following transient neonatal denervation of both the +/+ and the dy/dy EDL muscles results in a similar decrease (~62%) in the number of myofibers containing MHC2B and an increase in myofibers containing the other fast MHC isoforms (MHC2A and MHC2X). The selective effect of dy/dy on fibers containing MHC2B and the sparing of myofibers in transiently denervated dy/dy muscle (which contains a reduced frequency of fibers containing MHC2B) are consistent with, although not direct proof of, the hypothesis that alterations in the fiber type may play a role in the failure of myofibers in transiently denervated dy/dy muscles to undergo dystrophic deterioration. Evidence is presented suggesting that neurons that supply myofibers containing MHC2B may be at a selective disadvantage in their ability to reinnervate neonatally denervated muscles. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号