首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Administration of beta-adrenergic agonists to domestic species can lead to skeletal muscle hypertrophy, probably by reducing the rate of myofibrillar protein breakdown. Myofibrillar breakdown is associated with the calcium-dependent proteinase system (calpains I,II and calpastatin) whose activity also changes during beta-agonist treatment. A number of growth trials using the agonists cimaterol and clenbuterol with cattle, sheep, chicken and rat are reported which suggest a general mechanism whereby beta-agonists reduce calpain I activity, but increase calpain II and calpastatin activity in skeletal muscle. Parallel changes in specific mRNAs indicate that changes in gene expression or stabilisation of mRNA could in part explain the changes in activity.  相似文献   

2.
3.
4.
5.
6.
7.
8.
The capacity of natural resistance-associated macrophage protein-2 [Nramp2; also called divalent metal transporter-1 (DMT1) and divalent cation transporter-1 (DCT1)] to transport iron and its ubiquitous expression make it a likely candidate for transferrin-independent uptake of iron in peripheral tissues. We tested the hypothesis that non-transferrin-bound iron uptake by airway epithelial cells is associated with Nramp2/DMT1/DCT1 and that exposure to iron can increase Nramp2/DMT1/DCT1 mRNA and protein expression and transport of this metal. Exposure of BEAS-2B cells to ferric ammonium citrate (FAC) resulted in a decrease in Fe(3+) concentration in the supernatant that was dependent on time and initial iron concentration. In the presence of internalized calcein, FAC quenched the fluorescent signal, indicating intracellular transport of the metal. The Nramp2/DMT1/DCT1 mRNA isoform without an iron-response element (IRE) increased with exposure of BEAS-2B cells to FAC. RT-PCR demonstrated no change in the mRNA for the isoform with an IRE. Similarly, Western blot analysis for the isoform without an IRE confirmed an increased expression of this protein after FAC exposure, whereas the isoform with an IRE exhibited no change. Finally, immunohistochemistry revealed an increase in the isoform without an IRE in the rat lung epithelium after instillation of FAC. Comparable to mRNA and protein increases, iron transport was elevated after pretreatment of BEAS-2B cells with iron-containing compounds. We conclude that airway epithelial cells increase mRNA and expression of the Nramp2/DMT1/DCT1 without an IRE after exposure to iron. The increase results in an elevated transport of iron and its probable detoxification by these cells.  相似文献   

9.
10.
Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.  相似文献   

11.
12.
Isovalerylcarnitine, a product of the catabolism of L-leucine, is a potent activator of rat calpains isolated from erythrocytes, kidney, liver, skeletal and heart muscle. Only calpains II, but not calpains I, are activated by IVC, with the only exception of rat erythrocyte calpain I, the only species present in these cells which has a Ca2+ requirement higher than that of most calpain I isoenzymes. Activation by IVC involves a dual effect: 1) a ten fold increase in the affinity of calpain for Ca2+, and 2) an increase in the Vmax 1.3-1.6 fold above the values observed with the native enzymes at saturating [Ca2+] as well as with the autolyzed fully active calpain form at 5 microM Ca2+. The increased affinity for calcium results in an increased rate of autoproteolysis of calpain II. Activation by IVC is additive to that promoted by interaction (or association) to phospholipids vesicles. Together these results suggest that IVC may operate as a selective activator of calpain both in the cytosol and at the membrane level; in the latter case in synergism with the activation induced by association of the proteinase to the cell membrane.  相似文献   

13.
14.
15.
Both functional overload and hindlimb disuse induce significant energy-dependent remodeling of skeletal muscle. Lactate dehydrogenase (LDH), an important enzyme involved in anaerobic glycolysis, catalyzes the interconversion of lactate and pyruvate critical for meeting rapid high-energy demands. The purpose of this study was to determine rat soleus LDH-A and -B isoform expression, mRNA abundance, and enzymatic activity at the onset of increased or decreased loading in the rat soleus muscle. The soleus muscles from male Sprague-Dawley rats were functionally overloaded for up to 3 days by a modified synergist ablation or subjected to disuse by hindlimb suspension for 3 days. LDH mRNA concentration was determined by Northern blotting, LDH protein isoenzyme composition was determined by zymogram analysis, and LDH enzymatic activity was determined spectrophotometrically. LDH-A mRNA abundance increased by 372%, and LDH-B mRNA abundance decreased by 43 and 31% after 24 h and 3 days of functional overload, respectively, compared with that in control rats. LDH protein expression demonstrated a shift by decreasing LDH-B isoforms and increasing LDH-A isoforms. LDH-B activity decreased 80% after 3 days of functional overload. Additionally, LDH-A activity increased by 234% following 3 days of hindlimb suspension. However, neither LDH-A or LDH-B mRNA abundance was affected following 3 days of hindlimb suspension. In summary, the onset of altered loading induced a differential expression of LDH-A and -B in the rat soleus muscle, favoring rapid energy production. Long-term altered loading is associated with myofiber conversion; however, the rapid changes in LDH at the onset of altered loading may be involved in other physiological processes.  相似文献   

16.
DEAE-Sephacel and phenyl-Sepharose chromatography were compared as methods for separating and quantitatively isolating calpain I, calpain II, and calpastatin from lamb muscle extracts. DEAE-Sephacel chromatography gave greater than 90% recovery of all three proteins, while phenyl-Sepharose gave only 70, 66, and 48% of the DEAE recovery of calpain I, calpain II, and calpastatin, respectively. Additionally, DEAE-Sephacel chromatography was shown to effectively separate calpastatin and calpain I. Consequently DEAE-Sephacel appears to be superior to phenyl-Sepharose for quantitative isolation of the components of the calcium-dependent proteinase system from muscle extracts. Dietary administration of beta-agonist (L-644, 969; Merck Sharpe & Dohme Research Laboratories) decreases extractable calpain I activity in lamb longissimus dorsi (LD) muscle by 10-14% (P less than 0.05), increases calpain II activity by 34-42% (P less than 0.001), and increases calpastatin activity by 59-75% (P less than 0.001). Additionally, net cathepsin B activity is reduced by 30% (P less than 0.05) in the LD of beta-agonist-treated lambs. Reduced activity of the calcium-dependent or catheptic proteinase systems may contribute to the increased protein accretion in muscles of beta-agonist-treated lambs.  相似文献   

17.
Peroxiredoxin I (Prx I) and peroxiredoxin II (Prx II) are found in abundance in the cytoplasm of cells and catalyze the reduction of hydrogen peroxide with the use of electrons provided by thioredoxin. Here we examined Prx I and Prx II expression in rat lung during perinatal development and in response to hyperoxia. Prx I protein increased during late gestation and after birth fell to adult levels; conversely, Prx I mRNA increased after birth. Prx II protein concentration was unchanged in the perinatal period, but Prx II mRNA increased after birth. In response to hyperoxia begun on postnatal day 4, there was no change in Prx II expression; however, Prx I mRNA, protein, and enzymatic activity increased significantly. These data show that 1) Prx I and Prx II are developmentally regulated at the level of translational efficiency and 2) Prx I, but not Prx II, is inducible and is upregulated during the late-gestational preparation for the oxidative stress experienced by the lung at birth and during exposure to hyperoxia in the neonatal period.  相似文献   

18.
19.
Growth hormone (GH) and β agonists increase muscle mass, but the mechanisms for this response are unclear and the magnitude of response is thought to vary with age of animal. To investigate the mechanisms driving the muscle response to these agents, we examined the effects of short-term (6 day) administration of GH or cimaterol (a β2-adrenergic agonist, BA) on skeletal muscle phenotype in both young (day 60) and mature (day 120) lambs. Expression of myosin heavy chain (MyHC) isoforms were measured in Longissimus dorsi (LD), Semitendinosus (ST) and Supraspinatus (SS) muscles as markers of fibre type and metabolic enzyme activities were measured in LD. To investigate potential mechanisms regulating the changes in fibre type/metabolism, expression or activity of a number of signalling molecules were examined in LD. There were no effects of GH administration on MyHC isoform expression at either the mRNA or protein level in any of the muscles. However, BA treatment induced a proportional change in MyHC mRNA expression at both ages, with the %MyHCI and/or IIA mRNA being significantly decreased in all three muscles and %MyHCIIX/IIB mRNA significantly increased in the LD and ST. BA treatment induced de novo expression of MyHCIIB mRNA in LD, the fastest isoform not normally expressed in sheep LD, as well as increasing expression in the other two muscles. In the LD, the increased expression of the fastest MyHC isoforms (IIX and IIB) was associated with a decrease in isocitrate dehydrogenase activity, but no change in lactate dehydrogenase activity, indicating a reduced capacity for oxidative metabolism. In both young and mature lambs, changes in expression of metabolic regulatory factors were observed that might induce these changes in muscle metabolism/fibre type. In particular, BA treatment decreased PPAR-γ coactivator-1β mRNA and increased receptor-interacting protein 140 mRNA. The results suggest that the two agents work via different mechanisms or over different timescales, with only BA inducing changes in muscle mass and transitions to a faster, less oxidative fibre type after a 6-day treatment.  相似文献   

20.
Calpains are a ubiquitous, well-conserved family of calcium-dependent, cysteine proteases. Their function in muscle has received increased interest because of the discoveries that the activation and concentration of the ubiquitous calpains increase in the mouse model of Duchenne muscular dystrophy (DMD), but null mutations of muscle specific calpain causes limb girdle muscular dystrophy 2A (LGMD2A). These findings indicate that modulation of calpain activity contributes to muscular dystrophies by disrupting normal regulatory mechanisms influenced by calpains, rather than through a general, nonspecific increase in proteolysis. Thus, modulation of calpain activity or expression through pharmacological or molecular genetic approaches may provide therapies for some muscular dystrophies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号