首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One of the challenges when considering the motor control of birdsong is to understand how such a wide variety of temporally and spectrally diverse vocalizations are learned and produced. A better understanding of central neural processing, together with direct endoscopic observations and physiological studies of peripheral motor function during singing, has resulted in the formation of new theoretical models of song production. Recent work suggests that it may be more profitable to focus on the temporal relationship between control parameters than to attempt to directly correlate neural processing with details of the acoustic output.  相似文献   

2.
3.
In brown thrashers (Toxostoma rufum) and grey catbirds (Dumetella carolinensis) neither side of the syrinx has a consistently dominant role in song production. During song, the two sides operate independently, but in close cooperation with each other and with the respiratory muscles which are capable of adjusting expiratory effort to maintain a constant rate of syringeal airflow despite sudden changes in syringeal resistance. Phonation is frequently switched from one side of the syrinx to the other, both between syllables and within a syllable. When both sides of the syrinx produce sound simultaneously, their respective contributions are seldom harmonically related. The resulting “two-voice” syllables sometimes contain difference tones with prominent sinusoidal amplitude modulation (AM). Rarely, both sides simultaneously produce the same sound. In general, however, the frequency range of sound contributed by the right syrinx is higher than that of the left syrinx. The right syrinx is also primarily responsible for producing a rapid cyclical amplitude modulation which is a characteristic feature of some syllables. This kind of AM is generated by either repetitive brief bursts of sound from the right side that modulate the amplitude of a continuous sound arising on the left side or cyclically opening the right syrinx, allowing unmodulated expiratory air to bypass the phonating left side. 1994 John Wiley & Sons, Inc.  相似文献   

4.
The relationship between the motor and acoustic similarity of song was examined in brown thrashers (Toxostoma rufum) and grey catbirds (Dumetella carolinensis) (family Mimidae), which have very large song repertoires and sometimes mimic other species. Motor similarity was assessed by cross correlation of syringeal airflows and air sac pressures that accompany sound production. Although most syllables were sung only once in the song analyzed, some were repeated, either immediately forming a couplet, or after a period of intervening song, as a distant repetition. Both couplets and distant repetitions are produced by distinctive, stereotyped motor patterns. Their motor similarity does not decrease as the time interval between repetitions increases, suggesting that repeated syllables are stored in memory as fixed motor programs. The acoustic similarity between nonrepeated syllables, as indicated by correlation of their spectrograms, has a significant positive correlation with their motor similarity. This correlation is weak, however, suggesting that there is no simple linear relationship between motor action and acoustic output and that similar sounds may sometimes be produced by different motor mechanisms. When compared without regard to the sequence in which they are sung, syllables paired for maximum spectral similarity form a continuum with repeated syllables in terms of their acoustic and motor similarity. The prominence of couplets in the “syntax” of normal song is enhanced by the dissimilarity of successive nonrepeated syllables that make up the remainder of the song. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
6.
Song production in adult brown-headed cowbirds(Molothrus ater ater) is lateralized, with a slight right syringeal dominance. The left size of the syrinx produces low-frequency (200–2000 Hz) notes within the introductory note clusters, while the right side produces the higher-frequency (1500–6000 Hz) introductory notes, the interphrase unit (10–12 kHz), and the final high-frequency whistle (5–13 kHz). Cross-correlation analyses reveal that individual cowbirds produce each of their four to seven song types with a distinct stereotyped motor pattern–as judged by the patterns of syringeal airflow and subsyringeal pressure. The acoustic differences across song types are reflected in the differences in the bronchial airflow and air sac pressure patterns associated with song production. These motor differences are particularly striking within the second and third introductory note clusters where there is a rapid switching back and forth between the two sides of the syrinx in the production of notes. These motor skills may be especially important in producing behaviorally effective song. 1994 John Wiley & Sons, Inc.  相似文献   

7.
Lateralized behaviours are widespread in both vertebrates and invertebrates, suggesting that lateralization is advantageous. Yet evidence demonstrating proximate or ultimate advantages remains scarce, particularly in invertebrates or in species with individual-level lateralization. Desert locusts (Schistocerca gregaria) are biased in the forelimb they use to perform targeted reaching across a gap. The forelimb and strength of this bias differed among individuals, indicative of individual-level lateralization. Here we show that strongly biased locusts perform better during gap-crossing, making fewer errors with their preferred forelimb. The number of targeting errors locusts make negatively correlates with the strength of forelimb lateralization. This provides evidence that stronger lateralization confers an advantage in terms of improved motor control in an invertebrate with individual-level lateralization.  相似文献   

8.
The neuromuscular control of birdsong.   总被引:10,自引:0,他引:10  
Birdsong requires complex learned motor skills involving the coordination of respiratory, vocal organ and craniomandibular muscle groups. Recent studies have added to our understanding of how these vocal subsystems function and interact during song production. The respiratory rhythm determines the temporal pattern of song. Sound is produced during expiration and each syllable is typically followed by a small inspiration, except at the highest syllable repetition rates when a pattern of pulsatile expiration is used. Both expiration and inspiration are active processes. The oscine vocal organ, the syrinx, contains two separate sound sources at the cranial end of each bronchus, each with independent motor control. Dorsal syringeal muscles regulate the timing of phonation by adducting the sound-generating labia into the air stream. Ventral syringeal muscles have an important role in determining the fundamental frequency of the sound. Different species use the two sides of their vocal organ in different ways to achieve the particular acoustic properties of their song. Reversible paralysis of the vocal organ during song learning in young birds reveals that motor practice is particularly important in late plastic song around the time of song crystallization in order for normal adult song to develop. Even in adult crystallized song, expiratory muscles use sensory feedback to make compensatory adjustments to perturbations of respiratory pressure. The stereotyped beak movements that accompany song appear to have a role in suppressing harmonics, particularly at low frequencies.  相似文献   

9.
  相似文献   

10.
Adult male zebra finches underwent unilateral denervation of the syrinx or unilateral lesion of the forebrain nucleus HVC known to be important for song control. Disruptive effects of song were greater after right-side than after left-side operations. After denervation of the right half of the syrinx, the fundamental frequencies of all syllables within a song converged on a value near 500 Hz, and nearly all syllables were altered in type. In contrast, the syllables produced after denervation of the left side of the syrinx largely maintained their preoperative frequencies, and fewer syllables changed in type. Unlike nerve sections, HVC lesions did not result in strikingly lateralized effects on syllable phonology; however, HVC lesions did affect the temporal patterning of a bird's song, whereas nerve sections did not, and changes in temporal patterning were more marked after right than after left HVC lesions. Right-side dominance for zebra finch song control is the reverse of that described in other songbird species with lateral asymmetry for vocal communication. We suggest that the need for a dominant side is more important than the side of dominance. © 1992 John Wiley & Sons, Inc.  相似文献   

11.
  相似文献   

12.
13.
14.
  1. Birdsong is used in reproductive context and, consequently, has been shaped by strong natural and sexual selection. The acoustic performance includes a multitude of acoustic and temporal characteristics that are thought to honestly reveal the quality of the singing individual.
  2. One major song feature is frequency and its modulation. Sound frequency can be actively controlled, but the control mechanisms differ between different groups. Two described mechanisms are pressure‐driven frequency changes in suboscines and control by syringeal muscles in oscines.
  3. To test to what degree these different control mechanisms enhance or limit the exploitation of frequency space by individual species and families, we compared the use of frequency space by tyrannid suboscines and emberizid/passerellid oscines.
  4. We find that despite the different control mechanisms, the songs of species in both groups can contain broad frequency ranges and rapid and sustained frequency modulation (FM). The maximal values for these parameters are slightly higher in oscines.
  5. Furthermore, the mean frequency range of song syllables is substantially larger in oscines than suboscines. Species within each family group collectively exploit equally broadly the available frequency space.
  6. The narrower individual frequency ranges of suboscines likely indicate morphological specialization for particular frequencies, whereas muscular control of frequency facilitated broader exploitation of frequency space by individual oscine species.
  相似文献   

15.
16.
The aim of this work was to discover whether the respiration of wheat (Triticum aestivum L. cv. Huntsman) leaves, transferred to darkness after 7 h photosynthesis, showed an initial period of wasteful respiration. For young and old leaves, CO2 production and O2 uptake after 7 h photosynthesis were up to 56% higher than at the end of an 8-h night. The maximum catalytic activities of citrate synthase (EC 4.1.3.7), aconitase (EC 4.2.1.3), fumarase (EC 4.2.1.2) and cytochrome-c oxidase (EC 1.9.3.1) at the end of the day did not differ from those at the end of the night. Changes in the contents of glucose 6-phosphate, fructose-1,6-bisphosphate, dihydroxyacetone phosphate, and -ketoglutarate did not as a group parallel the changes in the rate of respiration. The detailed distribution of label from [U-14C] sucrose supplied to leaves in the dark was similar at the end of the day and the end of the night. No correlation was observed between the rates of leaf respiration and extension growth. It is argued that the higher rate of respiration at the beginning of the night cannot be attributed to wasteful respiration.Abbreviation RQ respiratory quotient We thank Dr H. Thomas and Professor C.J. Pollock, Institute for Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, UK for their generous help in measuring leaf extension. R.H.A. thanks the Science and Engineering Research Council for a studentship.  相似文献   

17.
A neuromechanical approach to control requires understanding how mechanics alters the potential of neural feedback to control body dynamics. Here, we rewrite activation of individual motor units of a behaving animal to mimic the effects of neural feedback without concomitant changes in other muscles. We target a putative control muscle in the cockroach, Blaberus discoidalis (L.), and simultaneously capture limb and body dynamics through high-speed videography and a micro-accelerometer backpack. We test four neuromechanical control hypotheses. We supported the hypothesis that mechanics linearly translates neural feedback into accelerations and rotations during static postural control. However, during running, the same neural feedback produced a nonlinear acceleration control potential restricted to the vertical plane. Using this, we reject the hypothesis from previous work that this muscle acts primarily to absorb energy from the body. The conversion of the control potential is paralleled by nonlinear changes in limb kinematics, supporting the hypothesis that significant mechanical feedback filters the graded neural feedback for running control. Finally, we insert the same neural feedback signal but at different phases in the dynamics. In this context, mechanical feedback enables turning by changing the timing and direction of the accelerations produced by the graded neural feedback.  相似文献   

18.
Animal locomotion arises from complex interactions among sensory systems, processing of sensory information into patterns of motor output, the musculo-skeletal dynamics that follow motor stimulation, and the interaction of appendages and body parts with the environment. These processes conspire to produce motions and forces that permit stunning manoeuvres with important ecological and evolutionary consequences. Thus, the habitats that animals may exploit, their ability to escape predators or attack prey, their capacity to manoeuvre and turn, or the use of their available energy all depend upon the processes that determine locomotion. Here, we summarize a series of 10 papers focused on this integrative research topic.  相似文献   

19.
Here, we used an obstacle treadmill experiment to investigate the neuromuscular control of locomotion in uneven terrain. We measured in vivo function of two distal muscles of the guinea fowl, lateral gastrocnemius (LG) and digital flexor-IV (DF), during level running, and two uneven terrains, with 5 and 7 cm obstacles. Uneven terrain required one step onto an obstacle every four to five strides. We compared both perturbed and unperturbed strides in uneven terrain to level terrain. When the bird stepped onto an obstacle, the leg became crouched, both muscles acted at longer lengths and produced greater work, and body height increased. Muscle activation increased on obstacle strides in the LG, but not the DF, suggesting a greater reflex contribution to LG. In unperturbed strides in uneven terrain, swing pre-activation of DF increased by 5 per cent compared with level terrain, suggesting feed-forward tuning of leg impedance. Across conditions, the neuromechanical factors in work output differed between the two muscles, probably due to differences in muscle-tendon architecture. LG work depended primarily on fascicle length, whereas DF work depended on both length and velocity during loading. These distal muscles appear to play a critical role in stability by rapidly sensing and responding to altered leg-ground interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号