首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
核酸适配体是通过体外指数富集配体系统进化(SELEX)技术筛选获得,并能够和蛋白质靶标高特异性、高亲和力结合的单链寡核苷酸。核酸适配体不但具有抗体的识别特性,而且具有自己独特的优良性能,目前已应用于分析检验、食品安全和生物医药等各个领域。蛋白质具有多种多样的生物功能以及临床诊断价值。因此,核酸适配体针对蛋白质靶标并在蛋白质相关的基础研究领域受到广泛的关注。核酸适配体应用性能的优劣取决于与其靶标蛋白质的亲和力与特异性。本文主要综述核酸适配体对蛋白质靶标的亲和力表征方法,以及在药物研发、肿瘤检测、生物成像以及生物传感器方面的应用。  相似文献   

2.
Galectins are defined by a conserved β-galactoside binding site that has been linked to many of their important functions in e.g. cell adhesion, signaling, and intracellular trafficking. Weak adjacent sites may enhance or decrease affinity for natural β-galactoside-containing glycoconjugates, but little is known about the biological role of this modulation of affinity (fine specificity). We have now produced 10 mutants of human galectin-3, with changes in these adjacent sites that have altered carbohydrate-binding fine specificity but that retain the basic β-galactoside binding activity as shown by glycan-array binding and a solution-based fluorescence anisotropy assay. Each mutant was also tested in two biological assays to provide a correlation between fine specificity and function. Galectin-3 R186S, which has selectively lost affinity for LacNAc, a disaccharide moiety commonly found on glycoprotein glycans, has lost the ability to activate neutrophil leukocytes and intracellular targeting into vesicles. K176L has increased affinity for β-galactosides substituted with GlcNAcβ1–3, as found in poly-N-acetyllactosaminoglycans, and increased potency to activate neutrophil leukocytes even though it has lost other aspects of galectin-3 fine specificity. G182A has altered carbohydrate-binding fine specificity and altered intracellular targeting into vesicles, a possible link to the intracellular galectin-3-mediated anti-apoptotic effect known to be lost by this mutant. Finally, the mutants have helped to define the differences in fine specificity shown by Xenopus, mouse, and human galectin-3 and, as such, the evidence for adaptive change during evolution.  相似文献   

3.
The biological functions of DNA-binding proteins often require that they interact with their targets with high affinity and/or high specificity. Here, we describe a computational method that estimates the extent of optimization for affinity and specificity of amino acids at a protein–DNA interface based on the crystal structure of the complex, by modeling the changes in binding-free energy associated with all individual amino acid and base substitutions at the interface. The extent to which residues are predicted to be optimal for specificity versus affinity varies within a given protein–DNA interface and between different complexes, and in many cases recapitulates previous experimental observations. The approach provides a complement to traditional methods of mutational analysis, and should be useful for rapidly formulating hypotheses about the roles of amino acid residues in protein–DNA interfaces.  相似文献   

4.
For experiments using synthetic ligands as probes for biological experiments, it is useful to determine the specificity and affinity of the ligands for their receptors. As ligands with higher affinities are developed (K(A)>10(8)M(-1); K(D)<10(-8)M), a new challenge arises: to measure these values accurately. Isothermal titration calorimetry measures heat produced or consumed during ligand binding, and also provides the equilibrium binding constant. However, as normally practiced, its range is limited. Displacement titration, where a competing weaker ligand is used to lower the apparent affinity of the stronger ligand, can be used to determine the binding affinity as well as the complete thermodynamic data for ligand-antibody complexes with very high affinity. These equilibrium data have been combined with kinetic measurements to yield the rate constants as well. We describe this methodology, using as an example antibody 2D12.5, which captures yttrium S-2-(4-aminobenzyl)-1, 4, 7, 10-tetraazacyclododecanetetraacetate.  相似文献   

5.
The crystal structures of two pairs of Fab fragments have been determined. The pairs comprise both a murine and an engineered human form, each derived from the antitumor antibodies A5B7 and CTM01. Although antigen specificity is maintained within the pairs, antigen affinity varies. A comparison of the hypervariable loops for each pair of antibodies shows their structure has been well maintained in grafting, supporting the canonical loop model. Detailed structural analysis of the binding sites and domain arrangements for these antibodies suggests the differences in antigen affinity observed are likely to be due to inherent flexibility of the hypervariable loops and movements at the VL:VH domain interface. The four structures provide the first opportunity to study in detail the effects of protein engineering on specific antibodies. Proteins 29:161–171, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
目的:获取GEBP11(肿瘤血管靶向肽)三聚体,即2PEG-(GEBP11)_3,以期提高GEBP11短肽的受体亲和力及特异性、血液循环。方法:通过PEGylation和多聚化修饰合成2PEG-(GEBP11)_3,通过人脐静脉内皮细胞与胃癌细胞SGC7901体外共培养以获的胃癌血管内皮细胞的部分特性,在对两者进行结合特异性的检验。结果:成功获取2PEG-(GEBP11)_3;GEBP11和2PEG-(GEBP11)_3的IC50值分别为451.7±3.8,52.6±3.4 nmol/L(n=3),三聚体GEBP11短肽的受体结合活性几乎是单体的10倍。结论:细胞竞争性结合实验和放射自显影提示2PEG-(GEBP11)_3与Co-HUVECs的亲和力高于单体,且标记过程对GEBP11短肽与Co-HUVECs的亲和力无明显影响,具有良好的生物学活性。  相似文献   

7.
T cell receptors (TCRs) are key to antigen-specific immunity and are increasingly being explored as therapeutics, most visibly in cancer immunotherapy. As TCRs typically possess only low-to-moderate affinity for their peptide/MHC (pMHC) ligands, there is a recognized need to develop affinity-enhanced TCR variants. Previous in vitro engineering efforts have yielded remarkable improvements in TCR affinity, yet concerns exist about the maintenance of peptide specificity and the biological impacts of ultra-high affinity. As opposed to in vitro engineering, computational design can directly address these issues, in theory permitting the rational control of peptide specificity together with relatively controlled increments in affinity. Here we explored the efficacy of computational design with the clinically relevant TCR DMF5, which recognizes nonameric and decameric epitopes from the melanoma-associated Melan-A/MART-1 protein presented by the class I MHC HLA-A2. We tested multiple mutations selected by flexible and rigid modeling protocols, assessed impacts on affinity and specificity, and utilized the data to examine and improve algorithmic performance. We identified multiple mutations that improved binding affinity, and characterized the structure, affinity, and binding kinetics of a previously reported double mutant that exhibits an impressive 400-fold affinity improvement for the decameric pMHC ligand without detectable binding to non-cognate ligands. The structure of this high affinity mutant indicated very little conformational consequences and emphasized the high fidelity of our modeling procedure. Overall, our work showcases the capability of computational design to generate TCRs with improved pMHC affinities while explicitly accounting for peptide specificity, as well as its potential for generating TCRs with customized antigen targeting capabilities.  相似文献   

8.
We explore the thermodynamic basis for high affinity binding and specificity in conserved protein complexes using colicin endonuclease-immunity protein complexes as our model system. We investigated the ability of each colicin-specific immunity protein (Im2, Im7, Im8 and Im9) to bind the endonuclease (DNase) domains of colicins E2, E7 and E8 in vitro and compared these to the previously studied colicin E9. We find that high affinity binding (Kd < or = 10(-14) M) is a common feature of cognate colicin DNase-Im protein complexes as are non-cognate protein-protein associations, which are generally 10(6)-10(8)-fold weaker. Comparative alanine scanning of Im2 and Im9 residues involved in binding the E2 DNase revealed similar behaviour to that of the two proteins binding the E9 DNase; helix III forms a conserved binding energy hotspot with specificity residues from helix II only contributing favourably in a cognate interaction, a combination we have termed as "dual recognition". Significant differences are seen, however, in the number and side-chain chemistries of specificity sites that contribute to cognate binding. In Im2, Asp33 from helix II dominates colicin E2 specificity, whereas in Im9 several hydrophobic residues, including position 33 (leucine), help define its colicin specificity. A similar distribution of specificity sites was seen using phage display where, with Im2 as the template, a library of randomised sequences was generated in helix II and the library panned against either the E2 or E9 DNase. Position 33 was the dominant specificity site recovered in all E2 DNase-selected clones, whereas a number of Im9 specificity sites were recovered in E9 DNase-selected clones, including position 33. In order to probe the relationship between biological specificity and in vitro binding affinity we compared the degree of protection afforded to bacteria against colicin E9 toxicity by a set of immunity proteins whose affinities for the E9 DNase differed by up to ten orders of magnitude. This analysis indicated that the Kd required for complete biological protection is <10(-10)M and that the "affinity window" over which the selection of novel immunity protein specificities likely evolves is 10(-6)-10(-10)M. This comprehensive survey of colicin DNase-immunity protein complexes illustrates how high affinity protein-protein interactions can be very discriminating even though binding is dominated by a conserved hotspot, with single or multiple specificity sites modulating the overall binding free energy. We discuss these results in the context of other conserved protein complexes and suggest that they point to a generic specificity mechanism in divergently evolved protein-protein interactions.  相似文献   

9.
A simple theoretical framework is presented for bioassay studies using three componentin vitrosystems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an 11-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein toin vitrosystems. The algorithm is tested by application to a published data set from an experimental study in anin vitrosystem (Limet al., 1990,Endocrinology127,1287–1291). Predicted changes show good agreement (within 8%) with experimental observations.  相似文献   

10.
Cisplatin analogues with an attached DNA binding moiety have a higher affinity for DNA, but often suffer from poor aqueous solubility. In this study we examined the DNA sequence specificity of more soluble cisplatin analogues containing the maltolato leaving group in both purified DNA and in intact human cells. In both environments the DNA sequence specificity of these analogues was very similar to cisplatin. However, in purified DNA a higher concentration of the two maltolato-containing analogues was needed to achieve a similar level of DNA damage as cisplatin. This difference in reactivity was not observed in intact cells as the two maltolato-containing complexes were capable of producing a similar level of damage as cisplatin at comparable concentrations. This was consistent with the IC50 values obtained for both cisplatin and the maltolato compounds which were also similar. This study indicated that maltolato can be utilised as the leaving group to increase the aqueous solubility of cisplatin analogues without reducing their biological activity.  相似文献   

11.
12.
Fibroblast growth factors (FGFs) mediate a multitude of physiological and pathological processes by activating a family of tyrosine kinase receptors (FGFRs). Each FGFR binds to a unique subset of FGFs and ligand binding specificity is essential in regulating FGF activity. FGF-7 recognizes one FGFR isoform known as the FGFR2 IIIb isoform or keratinocyte growth factor receptor (KGFR), whereas FGF-2 binds well to FGFR1, FGFR2, and FGFR4 but interacts poorly with KGFR. Previously, mutations in FGF-2 identified a set of residues that are important for high affinity receptor binding, known as the primary receptor-binding site. FGF-7 contains this primary site as well as a region that restricts interaction with FGFR1. The sequences that confer on FGF-7 its specific binding to KGFR have not been identified. By utilizing domain swapping and site-directed mutagenesis we have found that the loop connecting the beta4-beta5 strands of FGF-7 contributes to high affinity receptor binding and is critical for KGFR recognition. Replacement of this loop with the homologous loop from FGF-2 dramatically reduced both the affinity of FGF-7 for KGFR and its biological potency but did not result in the ability to bind FGFR1. Point mutations in residues comprising this loop of FGF-7 reduced both binding affinity and biological potency. The reciprocal loop replacement mutant (FGF2-L4/7) retained FGF-2 like affinity for FGFR1 and for KGFR. Our results show that topologically similar regions in these two FGFs have different roles in regulating receptor binding specificity and suggest that specificity may require the concerted action of distinct regions of an FGF.  相似文献   

13.
Affinity (the fastness) and specificity (the correctness) are the two important factors that decide the efficiency of a nucleic acid probe to target its specific site on a DNA lattice. DNA-probe interactions differ from protein-ligand interactions in a way that here the specificity and the affinity of the interactions correlate negatively with each other. We present a simple phenomenological theory to explain the negative correlation between the specificity and the affinity of the probe towards its target site on the template DNA under solution conditions. We show that a simple random jump model can explain this fact and we also predict that the negative correlation between the affinity and specificity diminishes as the temperature increases or the viscosity of the medium decreases. Moreover, the length of target DNA and the distance between the initial position of the probe on the template DNA lattice and the target site increases the magnitude of affinity-specificity negative correlation. These results are consistent with experimental observations. Finally we propose practical strategies to coherently improve the specificity and the affinity with respect to important molecular biological techniques such as PCR and Southern blotting.  相似文献   

14.
We examined the activity of human T cells engineered to express variants of a single TCR (1G4) specific for the cancer/testis Ag NY-ESO-1, generated by bacteriophage display with a wide range of affinities (from 4 microM to 26 pM). CD8(+) T cells expressing intermediate- and high-affinity 1G4 TCR variants bound NY-ESO-1/HLA-A2 tetramers with high avidity and Ag specificity, but increased affinity was associated with a loss of target cell specificity of the TCR gene-modified cells. T cells expressing the highest affinity TCR (K(D) value of 26 pM) completely lost Ag specificity. The TCRs with affinities in the midrange, K(D) 5 and 85 nM, showed specificity only when CD8 was absent or blocked, while the variant TCRs with affinities in the intermediate range-with K(D) values of 450 nM and 4 microM-demonstrated Ag-specific recognition. Although the biological activity of these two relatively low-affinity TCRs was comparable to wild-type reactivity in CD8(+) T cells, introduction of these TCR dramatically increased the reactivity of CD4(+) T cells to tumor cell lines.  相似文献   

15.
Musashi (MSI) family proteins control cell proliferation and differentiation in many biological systems. They are overexpressed in tumors of several origins, and their expression level correlates with poor prognosis. MSI proteins control gene expression by binding RNA and regulating its translation. They contain two RNA recognition motif (RRM) domains, which recognize a defined sequence element. The relative contribution of each nucleotide to the binding affinity and specificity is unknown. We analyzed the binding specificity of three MSI family RRM domains using a quantitative fluorescence anisotropy assay. We found that the core element driving recognition is the sequence UAG. Nucleotides outside of this motif have a limited contribution to binding free energy. For mouse MSI1, recognition is determined by the first of the two RRM domains. The second RRM adds affinity but does not contribute to binding specificity. In contrast, the recognition element for Drosophila MSI is more extensive than the mouse homolog, suggesting functional divergence. The short nature of the binding determinant suggests that protein-RNA affinity alone is insufficient to drive target selection by MSI family proteins.  相似文献   

16.
A high-affinity monoclonal antidigoxin antibody, produced by somatic cell fusion, was amplified by the formation of ascites. Purification from ascites was accomplished by affinity chromatography by passing the ascites over a digitoxin-amine-agarose column. Affinity-purified antidigoxin antibody was coupled to a pellicular microbead at concentrations of 10, 25, 50, and 100 mg/g bead. The immobilized antibody was characterized for binding affinity, for specificity to other cardiac glycosides, and for binding capacity. There were no changes in the binding affinity observed for the immobilized antibody when compared to that of the antibody grown in culture media. Binding capacities for the immobilized antibody were decreased from calculated theoretical values. Saturating the microbead with increasing concentrations of antibody lowered the binding efficiency of the antibody from 32 to 22% of theoretical values. Attempts to improve the binding capacity by immobilizing antibodies to the microbead at the immunoglobulin carbohydrate by periodate oxidation were unsuccessful. These data demonstrate that antidrug antibodies immobilized on solid supports remain functional and may have the capability of removing drug from biological fluids passed over the support.  相似文献   

17.
Antibodies, proteins produced in animals that bind with high specificity and affinity to a seemingly limitless variety of biomolecules, have an essential role in clinical medicine and basic biological research. Methods to produce antibody fragments on the surface of bacterial viruses were surveyed for their ability to replace animal-dependent antibodies. The use of filamentous phage to display antibody fragments derived from semisynthetic antibody genes was found to produce proteins that bind to antigens with a variety, specificity, and affinity similar to those produced in animal systems.  相似文献   

18.
J A Hunt  M Ahmed  C A Fierke 《Biochemistry》1999,38(28):9054-9062
The role of highly conserved aromatic residues surrounding the zinc binding site of human carbonic anhydrase II (CAII) in determining the metal ion binding specificity of this enzyme has been examined by mutagenesis. Residues F93, F95, and W97 are located along a beta-strand containing two residues that coordinate zinc, H94 and H96, and these aromatic amino acids contribute to the high zinc affinity and slow zinc dissociation rate constant of CAII [Hunt, J. A., and Fierke, C. A. (1997) J. Biol. Chem. 272, 20364-20372]. Substitutions of these aromatic amino acids with smaller side chains enhance the copper affinity (up to 100-fold) while decreasing the affinity of both cobalt and zinc, thereby altering the metal binding specificity up to 10(4)-fold. Furthermore, the free energy of the stability of native CAII, determined by solvent-induced denaturation, correlates positively with increased hydrophobicity of the amino acids at positions 93, 95, and 97 as well as with cobalt and zinc affinity. Conversely, increased copper affinity correlates with decreased protein stability. Zinc specificity is therefore enhanced by formation of the native enzyme structure. These data suggest that the hydrophobic cluster in CAII is important for orienting the histidine residues to stabilize metals bound with a distorted tetrahedral geometry and to destabilize the trigonal bipyramidal geometry of bound copper. Knowledge of the structural factors that lead to high metal ion specificity will aid in the design of metal ion biosensors and de novo catalytic sites.  相似文献   

19.
Bone morphogenetic proteins (BMPs) are extracellular messenger ligands involved in controlling a wide array of developmental and intercellular signaling processes. To initiate their specific intracellular signaling pathways, the ligands recognize and bind two structurally related serine/threonine kinase receptors, termed type I and type II, on the cell surface. Here, we present the crystal structures of BMP-3 and BMP-6, of which BMP-3 has remained poorly understood with respect to its receptor identity, affinity, and specificity. Using surface plasmon resonance (BIAcore) we show that BMP-3 binds Activin Receptor type II (ActRII) with Kd approximately 1.8 microM but ActRIIb with 30-fold higher affinity at Kd approximately 53 nM. This low affinity for ActRII may involve Ser-28 and Asp-33 of BMP-3, which are found only in BMP-3's type II receptor-binding interfaces. Point mutations of either residue to alanine results in up to 20-fold higher affinity to either receptor. We further demonstrate by Smad-based whole cell luciferase assays that the increased affinity of BMP-3S28A to ActRII enables the ligand's signaling ability to a level comparable to that of BMP-6. Focusing on BMP-3's preference for ActRIIb, we find that Lys-76 of ActRII and the structurally equivalent Glu-76 of ActRIIb are distinct between the two receptors. We demonstrate that ActRIIbE76K and ActRII bind BMP-3 with similar affinity, indicating BMP-3 receptor specificity is controlled by the interaction of Lys-30 of BMP-3 with Glu-76 of ActRIIb. These studies illustrate how a single amino acid can regulate the specificity of ligand-receptor binding and potentially alter biological signaling and function in vivo.  相似文献   

20.
Protein–nucleic acid interactions exhibit varying degrees of specificity. Relatively high affinity, sequence-specific interactions, can be studied with structure determination, but lower affinity, non-specific interactions are also of biological importance. We report simulations that predict the population of nucleic acid paths around protein surfaces, and give binding constant differences for changes in the protein scaffold. The method is applied to the non-specific component of interactions between eIF4Es and messenger RNAs that are bound tightly at the cap site. Adding a fragment of eIF4G to the system changes both the population of mRNA paths and the protein–mRNA binding affinity, suggesting a potential role for non-specific interactions in modulating translational properties. Generally, the free energy simulation technique could work in harness with characterized tethering points to extend analysis of nucleic acid conformation, and its modulation by protein scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号