首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently demonstrated that granulocyte-macrophage colony-stimulating factor (GM-CSF) is an autocrine growth factor for human osteoblastic (hOB) cells. Since GM-CSF is a member of the heparin-binding factor family, we examined the interactions between GM-CSF and glycosaminoglycans (GAGs) present in the osteoblast microenvironment. Using a bioassay in which the mitogenic activity of recombinant human (rh) GM-CSF was measured after incubation in the presence of an hOB cell layer or extracellular matrix (ECM) produced by these cells, we showed that rhGM-CSF binds to GAG components present in the ECM and that the bound rhGM-CSF retains its ability to stimulate hOB cell proliferation. Heparan sulfate compounds on the hOB cell surface were also found to sequester GM-CSF. Moreover, treatment with sodium chlorate, an inhibitor of GAG sulfation, suppressed the mitogenic activity of rhGM-CSF on hOB cells. This inhibitory effect was rescued by a low dose of heparin. Heparin was also found to promote the effect of rhGM-CSF on hOB cell proliferation, allowing nonmitogenic high doses of rhGM-CSF to stimulate hOB cell growth. Western blot analysis showed that undersulfation of cellular GAGs by chlorate inhibited the increased tyrosine phosphorylation of proteins involved in GM-CSF signaling in cloned immortalized hOB cells. The data demonstrate that GM-CSF binds to proteoglycans on the hOB cell surface and in ECM produced by these cells and that the bound GM-CSF is biologically active. Furthermore, this study shows that cellular proteoglycans play an essential role in GM-CSF signaling and biological activity in hOBs. J. Cell. Physiol. 177:187–195, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) mainly stimulates proliferation and maturation of myeloid progenitor cells. Although the signal transduction pathways triggered by GM-CSF receptor (GMR) have been extensively characterized, the roles of GMR signals in differentiation have remained to be elucidated. To examine the relationship between receptor expression and differentiation of hemopoietic cells, we used transgenic mice (Tg-mice) that constitutively express human (h) GMR at almost all stages of hemopoietic cell development. Proliferation and differentiation of hemopoietic progenitors in bone marrow cells from these Tg-mice were analyzed by methylcellulose colony formation assay. High affinity GMR interacts with GM-CSF in a species-specific manner, therefore one can analyze the effects of hGMR signals on differentiation of mouse hemopoietic progenitors using hGM-CSF. Although mouse (m) GM-CSF yielded only GM colonies, hGM-CSF supported various types of colonies including GM, eosinophil, mast cell, erythrocyte, megakaryocyte, blast cell, and mixed hemopoietic colonies. Thus, the effects of hGM-CSF on colony formation more closely resembled mIL-3 than those of mGM-CSF. In addition, hGM-CSF generated a much larger number of blast cell colonies and mixed cell colonies than did mIL-3. hGM-CSF also generated erythrocyte colonies in the absence of erythropoietin. Therefore, GM-CSF apparently has the capacity to promote growth of cells of almost all hemopoietic cell lineages, if functional hGMR is present.  相似文献   

3.
We studied the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptors (GM-CSF.R) in 20 human brain gliomas with different tumor gradings and demonstrated constitutive high levels of both mRNA gene expression and protein production exclusively in the highest-grade tumors (WHO, III-IV grade). Five astrocytic cell lines were isolated in vitro from glioma cells, which had selectively adhered to plates pre-coated with rhGM-CSF. These cells were tumorigenic when xenografted to athymic mice, and produced GM-CSF constitutively in culture. Two lines, particularly lines AS1 and PG1, each from a patient with glioblastoma multiforme, constitutively over-expressed both GM-CSF and GM-CSF.R genes and secreted into their culture media biologically active GM-CSF. Different clones of the AS1 line, isolated after subsequent passages in vitro and then transplanted to athymic mice, demonstrated higher tumorigenic capacity with increasing passages in vivo. Cell proliferation was stimulated by rhGM-CSF in late-stage malignant clones, whereas apoptosis occurred at high frequency in the presence of blocking anti-GM-CSF antibodies. In contrast, rhGM-CSF did not induce any apparent effect in early-stage clones expressing neither GM-CSF nor GM-CSF.R. The addition of rhGM-CSF or rhIL-1β, to cultures induced the overproduction of both GM-CSF and its receptors and increased gene activation for several functional proteins (e.g. NGF, VEGF, VEGF.R1, G-CSF, MHC-II), indicating that these cells may undergo dynamic changes in response to environmental stimuli. These findings thus revealed: (1) that the co-expression of both autocrine GM-CSF and GM-CSF.R correlates with the advanced tumor stage; (2) that an important contribution of GM-CSF in malignant glioma cells is the prevention of apoptosis. These results imply that GM-CSF has an effective role in the evolution and pathogenesis of gliomas.  相似文献   

4.
5.
Several mesenchymally derived cells, including osteoblasts, secrete hepatocyte growth factor (HGF). 1alpha,25(OH)(2)-vitamin D(3) [1,25(OH)(2)D(3)] inhibits proliferation and induces differentiation of MG-63 osteoblastic cells. Here we show that MG-63 cells secrete copious amounts of HGF and that 1,25(OH)(2)D(3) inhibits HGF production. MG-63 cells also express HGF receptor (c-Met) mRNA, suggesting an autocrine action of HGF. Indeed, although exogenous HGF failed to stimulate cellular proliferation, neutralizing endogenous HGF with a neutralizing antibody inhibited MG-63 cell proliferation; moreover, inhibiting HGF synthesis with 1,25(OH)(2)D(3) followed by addition of HGF rescued hormone-induced inhibition of proliferation. Nonneutralized cells displayed constitutive phosphorylation of c-Met and the mitogen-activated protein kinases mitogen/extracellular signal-regulated kinase (MEK) 1 and extracellular signal-regulated kinase (Erk) 1/2, which were inhibited by anti-HGF antibody. Constitutive phosphorylation of Erk1/2 was also abolished by 1,25(OH)(2)D(3). Addition of HGF to MG-63 cells treated with neutralizing HGF antibody induced rapid phosphorylation of c-Met, MEK1, and Erk1/2. Thus endogenous HGF induces a constitutively active, autocrine mitogenic loop in MG-63 cells. The known antiproliferative effect of 1,25(OH)(2)D(3) on MG-63 cells can be accounted for by the concomitant 1,25(OH)(2)D(3)-induced inhibition of HGF production.  相似文献   

6.
An untransformed murine thymic epithelial cell line (MTEC1) has been established. Without exogenous stimulation, the MTEC1 cells constitutively produced multiple types of cytokines, including IL-1, IL-6, IL-7, GM-CSF and chemotactic factor(s). Of which, IL-6, GM-CSF and chemotactic factor(s) were abundant; IL-1, moderate; and IL-7 at low level. MTEC1 cells neither produced detectable IL-3 nor TNF alpha. Thus, the MTEC1 cells may be useful not only in the evaluation of the signals required for thymic selection in vitro, but also useful in the analysis of the endogenous regulation of the autocrine cytokine production cascade.  相似文献   

7.
Autocrine production of growth factors may contribute to the rapid and fatal proliferation of acute hematologic malignancies. We have investigated whether the more controlled growth of less aggressive malignancies such as chronic myeloid leukemia (CML) may be associated with autocrine production of growth inhibitory factors. TNF inhibits the growth of both normal and leukemic hemopoietic progenitor cells. We find that exogenous TNF reduces the viability and DNA synthesis of purified myeloid cells from patients with CML and inhibits myeloid colony formation by patient progenitor cells. However, unlike progenitor cells from normal donors, patient myeloid progenitor cells also constitutively express mRNA for TNF and secrete functional TNF protein in culture. This endogenous TNF impedes the growth of CML cells because anti-TNF mAb shown to neutralize bioactive human TNF increases CML cell DNA synthesis whereas non-neutralizing anti-TNF mAb has no effect. Production of TNF by CML cells is not associated with production of lymphotoxin (TNF-beta), IL-1 or IL-6. TNF-mediated autocrine growth inhibition may contribute to the maintenance of the stable, chronic phase of this disease and similar mechanisms may operate in other malignancies to limit tumor proliferation. Competition between autocrine growth promoting and inhibiting factors may underlie the observed differences in biologic behavior between acute and chronic malignancies.  相似文献   

8.
The met proto-oncogene is the tyrosine kinase growth factor receptor for hepatocyte growth factor/scatter factor (HGF/SF). It was previously shown that, like the oncogenic tpr-met, the mouse met proto-oncogene transforms NIH 3T3 cells. We have established NIH 3T3 cells stably expressing both human (Methu) and mouse (Metmu) met proto-oncogene products. The protein products are properly processed and appear on the cell surface. NIH 3T3 cells express endogenous mouse HGF/SF mRNA, suggesting an autocrine activation mechanism for transformation by Metmu. However, the tumor-forming activity of Methu in NIH 3T3 cells is very low compared with that of Metmu, but efficient tumorigenesis occurs when Methu and HGF/SFhu are coexpressed. These results are consistent with an autocrine transformation mechanism and suggest further that the endogenous murine factor inefficiently activates the tumorigenic potential of Methu. The tumorigenicity observed with reciprocal chimeric human and mouse receptors that exchange external ligand-binding domains supports this conclusion. We also show that HGF/SFhu expressed in NIH 3T3 cells produces tumors in nude mice.  相似文献   

9.
In rat liver epithelial cells constitutively expressing transforming growth factor alpha (TGFalpha), c-Met is constitutively phosphorylated in the absence of its ligand, hepatocyte growth factor. We proposed that TGFalpha and the autocrine activation of its receptor, epidermal growth factor receptor (EGFR), leads to phosphorylation and activation of c-Met. We found that there is constitutive c-Met phosphorylation in human hepatoma cell lines and the human epidermoid carcinoma cell line, A431 which express TGFalpha, but not in normal human hepatocytes. Constitutive c-Met phosphorylation in A431, HepG2, AKN-1, and HuH6 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR. Exposure to exogenous TGFalpha or EGF increased the phosphorylation of c-Met in the human epidermoid carcinoma cell line, A431. The increase of c-Met phosphorylation by TGFalpha in A431 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR and by the EGFR-specific inhibitor tyrphostin AG1478. These results indicate that constitutive c-Met phosphorylation, and the increase of c-Met phosphorylation by TGFalpha or EGF, in tumor cell lines is the result of the activation via EGFR. We found that c-Met in tumor cells co-immunoprecipitates with EGFR regardless of the existence of their ligands in tumor cells, but not in normal human hepatocytes. We conclude that c-Met associates with EGFR in tumor cells, and this association facilitates the phosphorylation of c-Met in the absence of hepatocyte growth factor. This cross-talk between c-Met and EGFR may have significant implications for altered growth control in tumorigenesis.  相似文献   

10.
11.
12.
13.
TNF-alpha is known to exert antitumor and antiviral effects and to participate in the regulation of the immune response. In our study we demonstrate that human rTNF-alpha specifically blocks growth of SK-v keratinocyte cell line harboring and expressing human papillomavirus type 16 (HPV16) sequences. This inhibitory effect was shown by [3H]TdR incorporation and cell counting. Binding experiments with 125I-TNF-alpha showed that SK-v cells express about 10,000 single class TNF-alpha R per cell with affinity constant of about 0.7 nM. Binding of 125I-TNF-alpha could be inhibited by htr-9 mAb recognizing a 55/60-kDa type I TNF-alpha R but not by utr-1 mAb recognizing 75/80-kDa type II TNF-alpha R or irrelevant mAb specific for HPV16E7 protein. Addition of anti-TNF-alpha antibodies to SK-v cell culture resulted in significant (p < 0.05), dose-dependent stimulation of their proliferation. SK-v cells constitutively expressed TNF-alpha mRNA, and SK-v CM contained TNF-alpha, as demonstrated by Northern blot analysis, a specific ELISA, Western blot analysis, and a bioassay with TNF-alpha-sensitive L-M cells. HPLC gel filtration of SK-v cell CM showed that the factor cytotoxic for L-M cells coeluted with immunoreactive TNF-alpha. These results demonstrate that HPV16-harboring SK-v cells constitutively express and release immunoreactive and biologically active TNF-alpha that in turn may exert an autocrine growth inhibitory effect. This phenomenon could represent one of the self-limiting mechanisms controling growth of HPV-induced neoplasia.  相似文献   

14.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates cellular glucose uptake by decreasing the apparent K(m) for substrate transport through facilitative glucose transporters on the plasma membrane. Little is known about this signal transduction pathway and the role of the alpha subunit of the GM-CSF receptor (alpha GMR) in modulating transporter activity. We examined the function of phosphatidylinositol 3-kinase (PI 3-kinase) in GM-CSF-stimulated glucose uptake and found that PI 3-kinase inhibitors, wortmannin and LY294002, completely blocked the GM-CSF-dependent increase of glucose uptake in Xenopus oocytes expressing the low affinity alpha GMR and in human cells expressing the high affinity alpha beta GMR complex. We identified a Src homology 3 domain-binding motif in alpha GMR at residues 358-361 as a potential interaction site for the PI 3-kinase regulatory subunit, p85. Physical evidence for p85 binding to alpha GMR was obtained by co-immunoprecipitation with antibodies to alpha GMR and p85, and an alpha GMR mutant with alteration of the Src homology 3 binding domain lost the ability to bind p85. Experiments with a construct eliminating most of the intracellular portion of alpha GMR showed a 50% reduction in GM-CSF-stimulated glucose uptake with residual activity blocked by wortmannin. Searching for a proximally generated diffusible factor capable of activating PI 3-kinase, we identified hydrogen peroxide (H(2)O(2)), generated by ligand or antibody binding to alpha GMR, as the initiating factor. Catalase treatment abrogated GM-CSF- or anti-alpha GMR antibody-stimulated glucose uptake in alpha GMR-expressing oocytes, and H(2)O(2) activated PI 3-kinase and led to some stimulation of glucose uptake in uninjected oocytes. Human myeloid cell lines and primary explant human lymphocytes expressing high affinity GM-CSF receptors responded to alpha GMR antibody with increased glucose uptake. These results identify the early events in the stimulation of glucose uptake by GM-CSF as involving local H(2)O(2) generation and requiring PI 3-kinase activation. Our findings also provide a mechanistic explanation for signaling through the isolated alpha subunit of the GM-CSF receptor.  相似文献   

15.
Cell surface retention sequence binding protein-1 (CRSBP-1) is a cell surface binding protein for the cell surface retention sequence (CRS) motif of the v-sis gene product (platelet-derived growth factor-BB). It has been shown to be responsible for cell surface retention of the v-sis gene product in v-sis-transformed cells (fibroblasts) and has been hypothesized to play a role in autocrine growth and transformation of these cells. Here we demonstrate that the CRSBP-1 cDNA cloned from bovine liver libraries encodes a 322-residue type I membrane protein containing a 23-residue signal peptide, a 215-residue cell surface domain, a 21-residue transmembrane domain, and a 63-residue cytoplasmic domain. CRSBP-1 expressed in transfected cells is an approximately 120-kDa disulfide-linked homodimeric glycoprotein and exhibits dual ligand (CRS-containing growth regulators (v-sis gene product and insulin-like growth factor binding protein-3, IGFBP-3) and hyaluronic acid) binding activity. CRSBP-1 overexpression (by stable transfection of cells with CRSBP-1 cDNA) enhances autocrine loop signaling, cell growth, and tumorigenicity (in mice) of v-sis-transformed cells. CRSBP-1 expression also enhances autocrine cell growth mediated by IGFBP-3 in human lung carcinoma cells (H1299 cells), which express very little, if any, endogenous CRSBP-1 and exhibits a mitogenic response to exogenous IGFBP-3, stably transfected with IGFBP-3 cDNA. However, CRSBP-1 overexpression does not affect growth of normal and transformed cells that do not produce these CRS-containing growth regulators. These results suggest that CRSBP-1 plays a role in autocrine regulation of cell growth mediated by growth regulators containing CRS.  相似文献   

16.
G T Baxter  D L Miller  R C Kuo  H G Wada  J C Owicki 《Biochemistry》1992,31(45):10950-10954
We have used microphysiometry and antisense methodology to show that the epsilon isoenzyme of protein kinase C (PKC) is involved in the signal transduction pathway of granulocyte-macrophage colony-stimulating factor (GM-CSF) in a human bone marrow cell line, TF-1. These cells require GM-CSF or a related cytokine for proliferation. When the cells are appropriately exposed to GM-CSF, they exhibit a burst of metabolic activity that can be detected on the time scale of minutes in the microphysiometer, a biosensor-based instrument that measures the rate at which cells excrete protons. These cells express PKC alpha and -epsilon, as determined by Western blot analysis. Treatment with isoenzyme-specific antisense oligonucleotides inhibits expression appropriately, but only inhibition of PKC epsilon appreciably diminishes the burst of metabolic activity induced by GM-CSF. Consistent with the involvement of PKC epsilon, GM-CSF appears to activate phospholipase D and does not cause a detectable increase in cytosolic [Ca2+].  相似文献   

17.
Vascular endothelial growth factor (VEGF) receptor-2/kinase insert domain-containing receptor (KDR) is expressed in primitive hematopoietic cells, in megakaryocytes and platelets. In primitive hematopoiesis KDR mediates cell survival via autocrine VEGF, while its effect on cell growth and differentiation has not been elucidated. We induced enforced KDR expression in the granulocyte macrophage-colony-stimulating factor (GM-CSF)-dependent TF1 progenitor cell line (TF1-KDR), treated the cells with VEGF and analyzed their response. In GM-CSF-deprived cells, VEGF induces cell proliferation and protection against apoptosis, followed by enhanced expression of megakaryocytic (MK) markers. Combined with GM-CSF, VEGF induces a mild proliferative stimulus, followed by cell adherence, accumulation in G0/G1, massive MK differentiation and Fas-mediated apoptosis. Accordingly, we observed that MK-differentiating cells, derived from hematopoietic progenitors, produce VEGF, express KDR, inhibition of which reduces MK differentiation, indicating a key role of KDR in megakaryopoiesis. In conclusion, TF1-KDR cells provide a reliable model to investigate the biochemical and molecular mechanisms underlying hematopoietic progenitor proliferation, survival and MK differentiation.  相似文献   

18.
Activated T cells (Act T) produce multiple cytokines that affect osteoblast function as well as osteoclastogenesis. One of these cytokines, IL-13, is a multifunctional cytokine elaborated by Act T that regulates vascular cellular adhesion molecule (VCAM)-1 expression in endothelial cells. VCAM-1 has also been implicated in osteoclast formation by myeloma cells. We therefore studied whether IL-13 regulates VCAM-1 in human osteoblastic cells since these cells express RANKL, the major osteoclastogenic factor and osteoclast precursors are found adjacent to osteoblasts. Human T cells were activated in the absence or presence of Cyclosporin A (CsA), an inhibitor of the production of most activated T cell cytokines. Conditioned media were assayed for IL-13 by ELISA. Act T produced IL-13 and, unlike other T cell cytokines, this was elevated 3-fold by CsA. Exposure of human osteoblasts (hOB) to doses of recombinant human IL-13 (rhIL-13, 0-10 ng/ml) resulted in an increase of VCAM-1 mRNA (up to 5-fold) within 4 h with a maximum stimulation at 1 ng/ml. CsA had no effect on basal hOB VCAM-1 mRNA expression. Examination of VCAM-1 on the cell surface of hOB, by immunocytochemistry, revealed increasing levels of surface expression of the protein within 16 h after stimulation with doses of rhIL-13 (0.1-10 ng/ml) which were reflective of the mRNAs. IL-6 production was also stimulated in a dose dependent manner with a maximum of 2.5-fold with 1 ng/ml rhIL-13 within 16 h. Since both VCAM-1 and IL-6 showed similar responses to IL-13, IL-6 was examined for its ability to induce VCAM-1. Immunocytochemistry demonstrated no effect of IL-6 on VCAM-1 expression. These data demonstrate that during pathological processes associated with T cell activation, such as rheumatoid arthritis or possibly post-menopausal osteoporosis, T cells may play a pivotal role in osteoclast precursor adhesion to osteoblasts as a first step prior to RANKL signaling.  相似文献   

19.
N N Ali  V Gilston  P G Winyard 《FEBS letters》1999,460(2):315-320
Several bone resorptive stimuli affect osteoclasts indirectly by modulating the production and release of osteoblastic factors. Using electrophoretic mobility shift assays, we found that not only tumour necrosis factor-alpha (TNF-alpha) but also interleukin-1beta and parathyroid hormone (PTH) caused dose and time-related increases in nuclear factor kappaB (NF-kappaB)-DNA binding in Saos-2 human osteoblastic (hOB) cells. Activation of NF-kappaB by TNF-alpha was reproduced in primary hOBs. In contrast, consistent with their previously reported lack of response to steroid hormones, Saos-2 cells did not respond to 1,25-dihydroxyvitamin D(3). We suggest that NF-kappaB activation in osteoblastic cells constitutes an important pathway in osteoblast-mediated resorptive signalling.  相似文献   

20.
We investigated the effects of human granulocyte macrophage-colony stimulating factor (GM-CSF) on the relation between differentiation and apoptosis in SaOS-2 cells, an osteoblast-like cell line. To determine the relationship between these cellular processes, SaOS-2 cells were treated in vitro for 1, 7 and 14 days with 200 ng/mL GM-CSF and compared with untreated cells. Five nM insulin-like growth factor (IGF-I) and 30 nM okadaic acid were used as negative and positive controls of apoptosis, respectively. Effects on cell differentiation were determined by ECM (extracellular matrix) mineralization, morphology of some typical mature osteoblast differentiation markers, such as osteopontin and sialoprotein II (BSP-II), and production of bone ECM components such as collagen I. The results showed that treatment with GM-CSF caused cell differentiation accompanied by increased production of osteopontin and BSP-II, together with increased ECM deposition and mineralization. Flow cytometric analysis of annexin V and propidium iodide incorporation showed that GM-CSF up-regulated apoptotic cell death of SaOS-2 cells after 14 days of culture in contrast to okadaic acid, which stimulated SaOS-2 apoptosis only during the early period of culture. Endonucleolytic cleavage of genomic DNA, detected by "Aúladdering analysis"Aù, confirmed these data. The results suggest that GM-CSF induces osteoblastic differentiation and long-term apoptotic cell death of the SaOS-2 human osteosarcoma cell line, which in turn suggests a possible in vivo physiological role for GM-CSF on human osteoblast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号