首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The steroid derivative 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is a regulator of bone biology, and there is evidence that 1,25(OH)2D3 modulates arachidonic acid metabolism in osteoblastic cell model systems and in bone organ cultures. In the present studies, 1,25(OH)2D3 decreased prostaglandin (PG) biosynthesis by normal adult human osteoblast-like (hOB) cell cultures by about 30%. The decrease was observed under basal incubation conditions, or in specimens stimulated by transforming growth factor-β1 (TGF-β) or by tumor necrosis factor-α (TNF). The inhibition of the TGF-β-stimulated PG production appeared to reflect a diminished efficiency of arachidonic acid conversion into PGs by the cells, while the efficiency of substrate utilization for PG biosynthesis was unaffected by 1,25(OH)2D3 pretreatment in the unstimulated samples, or in samples stimulated with TNF or with TNF plus TGF-β. Free arachidonic acid levels were decreased following 1,25(OH)2D3 pretreatment in the TNF stimulated samples. hOB cell phospholipase A2 activity was measured in subcellular fractions, and this activity was decreased by 20–25% in the 1,25(OH)2D3 pretreated samples. The addition of the selective inhibitor AACOCF3 to the phospholipase A2 assays provided evidence that it was the cytoplasmic isoform of the enzyme that was affected by the 1,25(OH)2D3 pretreatment of the hOB cells. Thus, 1,25(OH)2D3 regulation of hOB cell biology includes significant effects on arachidonic acid metabolism. In turn, this could influence the effects of other hormones and cytokines whose actions include the stimulated production of bioactive arachidonic acid metabolites. J. Cell. Biochem. 68:237–246, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
The eicosanoids, including prostaglandin E2 (PGE2) and other bioactive arachidonic acid metabolites, are important local mediators of bone remodeling. Presumably, the limited or excessive synthesis of the eicosanoids could compromise bone homeostasis. We have noted that the stimulated release of arachidonic acid by adult male donor derived human osteoblast-like (hOB) cells exceeded the stimulated release measured for female-derived hOB cells by 1.5-fold. Assays of PGE2 biosynthesis by cytokine-stimulated hOB cells also demonstrated a sex-linked difference, such that male hOB cell PGE2 production exceeded female cell production by 1.6–2.2-fold. The calcium-dependent cytoplasmic phospholipase A2 activity in subcellular fractions prepared from hOB cell homogenates was higher in both the cytosolic (1.6-fold) and particulate (1.5-fold) fractions from the male cells than in those prepared from female hOB cells, suggesting a molecular basis for the observed sexually dimorphic characteristics related to arachidonic acid metabolism by hOB cells. The relatively limited capacity of the female cells may limit needed intracellular and intercellular signaling during bone remodeling, thereby contributing to the development of bone pathology. J. Cell. Biochem. 71:74–81, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.  相似文献   

4.
Adipocytes can function as endocrine cells secreting a variety of adipocytokines including tumor necrosis factor (TNF)-α. Treatment of cultured mouse 3T3-L1 preadipocytes with TNF-α induced apoptosis, as was evident from increases in nuclear condensation and caspase-3 activity, but differentiated adipocytes during the maturation phase showed resistance to apoptosis by TNF-α. Antioxidants effectively reduced TNF-α-induced apoptosis in preadipocytes, indicating the involvement of reactive oxygen species. Exposure of preadipocytes to calcium ionophore A23187 reduced TNF-α-induced apoptosis, which was accompanied by increased production of prostaglandins (PGs) E2 and PGF2α. TNF-αpreferentially promoted gene expression of cyclooxygenase (COX)-2 without affecting that of COX-1. Consistently, NS-398, a COX-2 inhibitor, stimulated TNF-α-induced apoptosis, which was reversed by exogenous PGE2 and PGF2α. These results indicate that endogenous PGE2 and PGF2α synthesized by preadipocytes through the induction of COX-2 can serve as anti-apoptotic factors against apoptosis by TNF-α.  相似文献   

5.
Cyclooxygenase (COX) is the rate-limiting enzyme for the biosynthesis of prostaglandins in monocytes/macrophages. The COX-1 is constitutively expressed in most tissues and may be involved in cellular homeostasis, whereas the COX-2 is an inducible enzyme that may play an important role in inflammation and mitogenesis. When U937 monocytic cells were incubated with retinoic acid (RA) for 48 h, cell differentiation took place with concomitant increases in prostaglandin E2 (PGE2) production and COX activity. In this study, the mechanism of RA (all-trans- or 9-cis-RA)-induced enhancement of PGE2 biosynthesis in U937 cells was examined. Treatment of cells with all-trans- or 9-cis-RA up to 48 h caused an increase in PGE2 production in a time- and dose-dependent manner. Both RA isomers caused the enhancement of PGE2 production and the up-regulation of COX-1 expression at the protein and mRNA levels. The increase in COX-1 mRNA was found to precede the increase in COX-1 protein expression. Interestingly, the COX-2 protein and COX-2 mRNA were not detected in U937 cells, and their levels remained undetectable during the entire course of RA treatment. We conclude that treatment of U937 cells by RA for 48 h caused the initiation of cell differentiation, which was found to be concomitant with a significant increase in PGE2 production mediated via the up-regulation of COX-1 mRNA and protein expression.  相似文献   

6.
Amyloid‐β peptides generated by proteolysis of the β‐amyloid precursor protein (APP) play an important role in the pathogenesis of Alzheimer's disease. The present study aimed to determine whether cytosolic phospholipase A2α (cPLA2α) plays a role in elevated APP protein expression induced by aggregated amyloid‐β1‐42 (Aβ) in cortical neurons and to elucidate its specific role in signal events leading to APP induction. Elevated cPLA2α and its activity determined by phosphorylation on serine 505 as well as elevated APP protein expression, were detected in primary rat cortical neuronal cultures exposed to Aβ for 24 h and in cortical neuron of human amyloid‐β1‐42 brain infused mice. Prevention of cPLA2α up‐regulation and its activity by oligonucleotide antisense against cPLA2α (AS) prevented the elevation of APP protein in cortical neuronal cultures and in mouse neuronal cortex. To determine the role of cPLA2α in the signals leading to APP induction, increased cPLA2α expression and activity induced by Aβ was prevented by means of AS in neuronal cortical cultures. Under these conditions, the elevated cyclooxygenase‐2 and the production of prostaglandin E2 (PGE2) were prevented. Addition of PGE2 or cyclic AMP analogue (dbcAMP) to neuronal cultures significantly increased the expression of APP protein, while the presence protein kinase A inhibitor (H‐89) attenuated the elevation of APP induced by Aβ. Inhibition of elevated cPLA2α by AS prevented the activation of cAMP response element binding protein (CREB) as detected by its phosphorylated form, its translocation to the nucleus and its DNA binding induced by Aβ which coincided with cPLA2α dependent activation of CREB in the cortex of Aβ brain infused mice. Our results show that accumulation of Aβ induced elevation of APP protein expression mediated by cPLA2α, PGE2 release, and CREB activation via protein kinase A pathway.

  相似文献   


7.
The RANKL/RANK/OPG pathway is essential for bone remodeling regulation. Many hormones and cytokines are involved in regulating gene expression in most of the pathway components. Moreover, any deregulation of this pathway can alter bone metabolism, resulting in loss or gain of bone mass. Whether osteoblasts from osteoporotic and nonosteoporotic patients respond differently to cytokines is unknown. The aim of this study was to compare the effect of interleukin (IL)‐1β, proftaglandin E2 (PGE2), and transforming growth factor‐β1 (TGF‐β1) treatments on OPG and RANKL gene expression in normal (n = 11) and osteoporotic (n = 8) primary osteoblasts. OPG and RANKL mRNA levels of primary human osteoblastic (hOB) cell cultures were assessed by real‐time PCR. In all cultures, OPG mRNA increased significantly in response to IL‐1β treatment and decreased in response to TGF‐β1 whereas PGE2 treatment had no effect. RANKL mRNA levels were significantly increased by all treatments. Differences in OPG and RANKL responses were observed between osteoporotic and nonosteoporotic hOB: in osteoporotic hOB, the OPG response to IL‐1β treatment was up to three times lower (P = 0.009), whereas that of RANKL response to TGF‐β1 was five times higher (P = 0.002) after 8 h of treatment, as compared with those in nonosteoporotic hOBs. In conclusion, osteoporotic hOB cells showed an anomalous response under cytokine stimulation, consistent with an enhanced osteoclastogenesis resulting in high levels of bone resorption. J. Cell. Biochem. 110: 304–310, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
During endometrial inflammation, bovine endometrium responds by increasing the production of pro-inflammatory mediators, such as interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and eicosanoids. The purpose of this study was to establish and characterize an in vitro model of endometrial inflammation using bovine endometrial epithelial (bEEL) and stromal (bCSC) cell lines. We evaluated the effects of the infectious agent (bacterial lipopolysaccharide; LPS) and pro-inflammatory mediators (IL-1β and TNFα) on eicosanoid biosynthesis pathway gene expression and production by bEEL and bCSC cells. Based on concentration-response experiments, the optimal concentrations for responses were 1?μg/mL LPS, 10?ng/mL IL-1β and 50?ng/mL TNFα. Real-time PCR results show that there was an upregulation of relative mRNA expression of PTGS2 when bEEL and bCSC were treated with LPS, IL-1β and TNFα. An increase in PTGES3 expression was observed when bEEL cells were treated with LPS and IL-1β and PTGES2 when treated with IL-1β. In bCSC cells, FAAH relative mRNA was decreased upon treatments. Rate of production of PGE2, PGF, PGE2-EA and PGF-EA were also determined using liquid chromatography tandem mass spectrometry. Our results show that eicosanoid production was increased in both cell lines in response to LPS, IL-1β, and TNFα. We suggest that the characteristics of bEEL and bCSC cell lines mimic the physiological responses found in mammals with endometrial infection, making them excellent in vitro models for intrauterine environment studies.  相似文献   

9.
Prostaglandin (PG)E2 is a critical lipid mediator connecting chronic inflammation to cancer. The anti-carcinogenic epigallocatechin-3-gallate (EGCG) from green tea (Camellia sinensis) suppresses cellular PGE2 biosynthesis, but the underlying molecular mechanisms are unclear. Here, we investigated the interference of EGCG with enzymes involved in PGE2 biosynthesis, namely cytosolic phospholipase (cPL)A2, cyclooxygenase (COX)-1 and -2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). EGCG failed to significantly inhibit isolated COX-2 and cPLA2 up to 30 μM and moderately blocked isolated COX-1 (IC50 > 30 μM). However, EGCG efficiently inhibited the transformation of PGH2 to PGE2 catalyzed by mPGES-1 (IC50 = 1.8 μM). In lipopolysaccharide-stimulated human whole blood, EGCG significantly inhibited PGE2 generation, whereas the concomitant synthesis of other prostanoids (i.e., 12(S)-hydroxy-5-cis-8,10-trans-heptadecatrienoic acid and 6-keto PGF) was not suppressed. Conclusively, mPGES-1 is a molecular target of EGCG, and inhibition of mPGES-1 is seemingly the predominant mechanism underlying suppression of cellular PGE2 biosynthesis by EGCG.  相似文献   

10.
11.
12.
Tranilast (N-[3′,4′-dimethoxycinnamonyl] anthranilic acid), an orally active anti-allergic drug, is reported to exert the anti-inflammatory effects, but the underlying mechanisms that could explain the anti-inflammatory actions of tranilast remain largely unknown. Here, we found that tranilast induces heme oxygenase-1 (HO-1) expression through the extracellular signal-regulated kinase-1/2 (ERK1/2) pathway in RAW264.7 macrophages. Tranilast suppressed cyclooxygenase-2 (COX-2) and inducible nitric oxide (NO) synthase (iNOS) expression, and thereby reduced COX-2-derived prostaglandin E2 (PGE2) and iNOS-derived NO production in lipopolysaccharide (LPS)-stimulated macrophages. Similarly, tranilast diminished tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) production. Interestingly, the effects of tranilast on LPS-induced PGE2, NO, TNF-α, and IL-1β production were partially reversed by the HO-1 inhibitor tin protoporphyrin, suggesting that tranilast-induced HO-1 expression is at least partly responsible for the resulting anti-inflammatory effects of the drug. Thus, HO-1 expression via ERK1/2 activation may be at least one of the possible mechanisms explaining the anti-inflammatory actions of tranilast.  相似文献   

13.
Proinflammatory cytokines may promote preterm labor in the setting of intrauterine infection. Tumor necrosis factor (TNF) and interleukin-1 (IL-1) synergistically stimulate the production of prostaglandin E2 (PGE2) by amnion cells. Transforming growth factor-β (TGF-β) inhibits the cytokine-stimulated PGE2 production. In the present study, we investigated the binding of IL-1β on human amnion cells in culture. Untreated amnion cells possessed 540±60 IL-1 receptors per cell, with a dissociation constant of 1.4±0.4 nM. Cells treated with TGF-β1 (10 ng/ml) had 570±110 receptors per cell. TNF-α (50 ng/ml) increased the number of IL-1 receptors to 2930±590. TGF-β1 inhibited the receptor upregulation by TNF-α. Cells treated with TGF-β1 and TNF-α expressed 1140±590 receptors per cell. The binding affinity was not changed by the cytokines. IL-1 receptor antagonist (IL-1ra) inhibited the stimulation of amnion cell PGE2 production by IL-1β, but not by TNF-α. Amnion cells secreted large amounts of IL-1ra (1.1±0.3 ng/105 cells). Treatment of the cells with TGF-β1 or TNF-α did not affect the release of IL-1ra. We conclude that IL-1 receptor expression is an important step in the regulation of the effects of cytokines on amnion cell PGE2 production.  相似文献   

14.
15.
The purpose of this study was to elucidate the role of NO and O-2 on enzymatic components of cyclooxygenase (COX) pathway in peritoneal macrophages. Activation of murine peritoneal macrophages by lipopolysaccharides (LPS) resulted in time-dependent production of nitric oxide (NO) and prostaglandin E2 (PGE2). This stimulation was also accompanied by the production of other reactive oxygen species such as superoxide (O-2), and by increased expression of COX-2. Our results provide evidence that O-2 may be involved in the pathways that result in arachidonate release and PGE2 formation by COX-2 in murine peritoneal macrophages stimulated by LPS. However, we were not able to demonstrate that NO participates in the regulation of PG production under our experimental conditions.  相似文献   

16.
The classic mode of G protein‐coupled receptor (GPCR)‐mediated transactivation of the receptor tyrosine kinase epidermal growth factor receptor (EGFR) transactivation occurs via matrix metalloprotease (MMP)‐mediated cleavage of plasma membrane‐anchored EGFR ligands. Herein, we show that the Gαs‐activating GPCR ligands vasoactive intestinal peptide (VIP) and prostaglandin E2 (PGE2) transactivate EGFR through increased cell‐surface delivery of the EGFR ligand transforming growth factor‐α (TGFα) in polarizing madin‐darby canine kidney (MDCK) and Caco‐2 cells. This is achieved by PKA‐mediated phosphorylation of naked cuticle homolog 2 (NKD2), previously shown to bind TGFα and direct delivery of TGFα‐containing vesicles to the basolateral surface of polarized epithelial cells. VIP and PGE2 rapidly activate protein kinase A (PKA) that then phosphorylates NKD2 at Ser‐223, a process that is facilitated by the molecular scaffold A‐kinase anchoring protein 12 (AKAP12). This phosphorylation stabilized NKD2, ensuring efficient cell‐surface delivery of TGFα and increased EGFR activation. Thus, GPCR‐triggered, PKA/AKAP12/NKD2‐regulated targeting of TGFα to the cell surface represents a new mode of EGFR transactivation that occurs proximal to ligand cleavage by MMPs.   相似文献   

17.
18.
Chronic colitis is associated with decreased colonic muscle contraction and loss of mucosal barrier function. Pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS) are important in the generation and maintenance of inflammation. While colitis is associated with upregulated COX-2 -derived prostanoids and nitric oxide (NO), the direct activity of pro-inflammatory cytokines on human colonic neuromuscular function is less clear. This study investigated the effects of IBD-associated pro-inflammatory cytokines IL-17, TNF-α, IL-1β and LPS on human colonic muscle strip contractility, alone and following inhibition of COX-2 or nitric oxide production. In addition, human colonic epithelial Caco-2 cell monolayers were treated with LPS or COX-2 mediators including prostaglandins (PGE2, PGF) or their corresponding ethanolamides (PGE2-EA or PGF-EA) over 48 h and trans-epithelial electrical resistance used to record permeability changes. Longitudinal muscle strips were obtained from healthy colonic resection margins and mounted in organ baths following IL-17, TNF-α, IL-1β and bacterial LPS incubations in an explant setting over 20 h. Contraction in response to acetylcholine (ACh) was then measured, before and after either COX-2 inhibition (nimesulide; 10−5 M) or nitric oxide synthase (NOS) inhibition (l-NNA; 10−4 M). None of the cytokine or LPS explant incubations affected the potency or maximum cholinergic contraction in vitro, and subsequent COX-2 blockade with nimesulide revealed a significant but similar decrease in potency of ACh-evoked contraction in control, LPS and cytokine-incubated muscle strips. Pre-treatment with l-NNA provided no functional differences in the potency or maximum contractile responses to ACh in cytokine or LPS-incubated colonic longitudinal smooth muscle. Only PGE2 transiently increased Caco-2 monolayer permeability at 24 h, while LPS (10 μg/ml) increased permeability over 24–48 h.These findings indicate that cholinergic contractility in the human colon can be decreased by the blockade of COX-2 generated excitatory prostanoids, but major pro-inflammatory cytokines or LPS do not alter the sensitivity or amplitude of this contraction ex vivo. While PGE2 transiently increase epithelial permeability, LPS generates a significant and sustained increase in permeability indicative of an important role on barrier function at the mucosal interface.  相似文献   

19.
20.
IL-27 is a heterodimeric cytokine that regulates both innate and adaptive immunity. The immunosuppressive effect of IL-27 largely depends on induction of IL-10-producing Tr1 cells. To date, however, effects of IL-27 on regulation of immune responses via mediators other than cytokines remain poorly understood. To address this issue, we examined immunoregulatory effects of conditional medium of bone marrow-derived macrophages (BMDMs) from WSX-1 (IL-27Rα)-deficient mice and found enhanced IFN-γ and IL-17A secretion by CD4+ T cells as compared with that of control BMDMs. We then found that PGE2 production and COX-2 expression by BMDMs from WSX-1-deficient mice was increased compared to control macrophages in response to LPS. The enhanced production of IFN-γ and IL-17A was abolished by EP2 and EP4 antagonists, demonstrating PGE2 was responsible for enhanced cytokine production. Murine WSX-1-expressing Raw264.7 cells (mWSX-1-Raw264.7) showed phosphorylation of both STAT1 and STAT3 in response to IL-27 and produced less amounts of PGE2 and COX-2 compared to parental RAW264.7 cells. STAT1 knockdown in parental RAW264.7 cells and STAT1-deficiency in BMDMs showed higher COX-2 expression than their respective control cells. Collectively, our result indicated that IL-27/WSX-1 regulated PGE2 secretion via STAT1–COX-2 pathway in macrophages and affected helper T cell response in a PGE2-mediated fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号