首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liu Z  Song Y  Gu S  He X  Zhu X  Shen Y  Wu B  Wang W  Li S  Jiang P  Lu J  Huang W  Yan Q 《Gene》2012,506(2):339-343
Hypertrophic cardiomyopathy is a primary disorder characterized by asymmetric thickening of the septum and left ventricular wall, which affects 1 in 500 individuals in the general population. Mutations in mitochondrial DNA have been found to be one of the most important causes of hypertrophic cardiomyopathy. Here we report the clinical, genetic and molecular characterization of a Han Chinese family with a likely maternally transmitted hypertrophic cardiomyopathy. Four (2 men/2 women) of 5 matrilineal relatives in this 3-generation family exhibited the variable severity and age at onset of 44 to 79years old. Sequence analysis of the entire mitochondrial DNA in this pedigree identified the known homoplasmic ND5 12338T>C variant. This mitochondrial DNA haplogroup belongs to the Eastern Asian F2a. The 12338T>C variant, highly evolutionarily conserved, resulted in the replacement of the translation initiating methionine with a threonine, shortening the ND5 polypeptide by 2 amino acids. The occurrence of ND5 12338T>C variant exclusively in maternal members of this Chinese family suggested that the 12338T>C variant is associated with maternally inherited hypertrophic cardiomyopathy. Our findings will provide theoretical basis for genetic counseling of maternally inherited hypertrophic cardiomyopathy.  相似文献   

2.
With the advent of technologies to obtain the complete sequence of the human genome in a cost-effective manner, this decade and those to come will see an exponential increase in our understanding of the underlying genetics that lead to human disease. And where we have a deep understanding of the biochemical and biophysical basis of the machineries and pathways involved in those genetic changes, there are great hopes for the development of modern therapeutics that specifically target the actual machinery and pathways altered by individual mutations. Prime examples of such a genetic disease are those classes of hypertrophic and dilated cardiomyopathy that result from single amino-acid substitutions in one of several of the proteins that make up the cardiac sarcomere or from the truncation of myosin binding protein C. Hypertrophic cardiomyopathy alone affects ∼1 in 500 individuals, and it is the leading cause of sudden cardiac death in young adults. Here I describe approaches to understand the molecular basis of the alterations in power output that result from these mutations. Small molecules binding to the mutant sarcomeric protein complex should be able to mitigate the effects of hypertrophic and dilated cardiomyopathy mutations at their sources, leading to possible new therapeutic approaches for these genetic diseases.  相似文献   

3.
With the advent of technologies to obtain the complete sequence of the human genome in a cost-effective manner, this decade and those to come will see an exponential increase in our understanding of the underlying genetics that lead to human disease. And where we have a deep understanding of the biochemical and biophysical basis of the machineries and pathways involved in those genetic changes, there are great hopes for the development of modern therapeutics that specifically target the actual machinery and pathways altered by individual mutations. Prime examples of such a genetic disease are those classes of hypertrophic and dilated cardiomyopathy that result from single amino-acid substitutions in one of several of the proteins that make up the cardiac sarcomere or from the truncation of myosin binding protein C. Hypertrophic cardiomyopathy alone affects ∼1 in 500 individuals, and it is the leading cause of sudden cardiac death in young adults. Here I describe approaches to understand the molecular basis of the alterations in power output that result from these mutations. Small molecules binding to the mutant sarcomeric protein complex should be able to mitigate the effects of hypertrophic and dilated cardiomyopathy mutations at their sources, leading to possible new therapeutic approaches for these genetic diseases.  相似文献   

4.
To identify the disease locus of familial hypertrophic cardiomyopathy (FHC) in a Chinese family, a genetic linkage study was performed using polymorphisms from various chromosomal regions. This family has eight affected members, including a case with typical features of apical hypertrophic cardiomyopathy of the Japanese type. The results revealed significant evidence of linkage of polymorphisms on chromosome 11p13–q13 and FHC in this family with a maximal lod score of 3.38 at θ = 0.00. Our data suggest that the locus responsible for FHC in this family maps to chromosome 11 and that the molecular basis of FHC in the case of apical hypertrophic cardiomyopathy of the Japanese type might be similar to that of other affected members in the same family. Further studies are needed to elucidate the whole spectrum of the genetic basis of apical hypertrophic cardiomyopathy of the Japanese type. Received: 15 June 1995 / Revised: 22 August 1995  相似文献   

5.
目的:分析一家族性肥厚型心肌病的特点。方法:对我院就诊的一肥厚型心肌病大家系进行临床调查研究,分析其临床特点,绘制家系图谱。结果:该家系为连续四代遗传,家系成员共35例,患者11例,猝死3例,死亡2例。有1例患者房颤及脑梗塞,2例患者行永久性起搏器植入术,猝死年龄最小3岁,符合肥厚型心肌病高发病率、高猝死率、发病年龄早等特点。结论:家族性肥厚型心肌病详细的家系调查有助于了解疾病全貌,更好地揭示其遗传规律。  相似文献   

6.
Determination of disease-relevant proteomic profiles from limited tissue specimens, such as pathological biopsies and tissues from small model organisms, remains an analytical challenge and a much needed clinical goal. In this study, a transgenic mouse disease model of cardiac-specific H-Ras-G12V induced hypertrophic cardiomyopathy provided a system to explore the potential of using mass spectrometry (MS)-based proteomics to obtain a disease-relevant molecular profile from amount-limited specimens that are routinely used in pathological diagnosis. Our method employs a two-stage methanol-assisted solubilization to digest lysates prepared from 8-μm-thick fresh-frozen histological tissue sections of diseased/experimental and normal/control hearts. Coupling this approach with a nanoflow reversed-phase liquid chromatography (LC) and a hybrid linear ion trap/Fourier transform-ion cyclotron resonance MS resulted in the identification of 704 and 752 proteins in hypertrophic and wild-type (control) myocardium, respectively. The disease driving H-Ras protein along with vimentin were unambiguously identified by LC-MS in hypertrophic myocardium and cross-validated by immunohistochemistry and western blotting. The pathway analysis involving proteins identified by MS showed strong association of proteomic data with cardiovascular disease. More importantly, the MS identification and subsequent cross-validation of Wnt3a and β-catenin, in conjunction with IHC identification of phosphorylated GSK-3β and nuclear localization of β-catenin, provided evidence of Wnt/β-catenin canonical pathway activation secondary to Ras activation in the course of pathogenic myocardial hypertrophic transformation. Our method yields results indicating that the described proteomic approach permits molecular discovery and assessment of differentially expressed proteins regulating H-Ras induced hypertrophic cardiomyopathy. Selected proteins and pathways can be further investigated using immunohistochemical techniques applied to serial tissue sections of similar or different origin.  相似文献   

7.
The cardiomyopathies are defined as: ‘a myocardial disorder in which the heart is structurally and functionally abnormal, in the absence of coronary artery disease, hypertension and congenital heart disease sufficient to cause the myocardial abnormality.’1 With the advent of molecular cardiology and cardiovascular imaging (including MRI and echocardiography) in the last decade, much insight has been gained into the different clinical presentations, its familial and genetic causes and pathophysiology in explaining left ventricular function and prognosis. This has been especially true for hypertrophic cardiomyopathy, but also for dilated cardiomyopathy (DCM) and RV cardiomyopathy.  相似文献   

8.
Organic acids in the hearts of patients with idiopathic cardiomyopathy, obtained by biopsy, were studied using gas chromatography—mass spectrometry. The profiling of organic acids was compared among eight cases of hypertrophic cardiomyopathy, three cases of congestive cardiomyopathy, and nine cases of other heart diseases, which were regarded as controls.It was found that almost all organic acids, especially deoxyaldonic acids of 2-deoxytetronic acid, 2,3-dideoxypentonic acid, 3-deoxy-2-C-(hydroxymethyl)tetronic acid, 3-deoxyerythropentonic acid and 3-deoxy-2-C-(hydroxymethyl)erythropentonic acid, were accumulated in large amounts in the heart in congestive cardiomyopathy, while these acids were decreased in hypertrophic cardiomyopathy. It was therefore suggested that deoxyaldonic acid metabolism in the heart in congestive cardiomyopathy is quite different from that in hypertrophic cardiomyopathy.  相似文献   

9.
It has been known for several decades that mutations in genes that encode for proteins involved in the control of actomyosin interactions such as the troponin complex, tropomyosin and MYBP-C and thus regulate contraction can lead to hereditary hypertrophic cardiomyopathy. In recent years, it has become apparent that actin-binding proteins not directly involved in the regulation of contraction also can exhibit changed expression levels, show altered subcellular localisation or bear mutations that might lead to hereditary cardiomyopathies. The aim of this review is to look beyond the troponin/tropomyosin mechanism and to give an overview of the different types of actin-associated proteins and their potential roles in cardiomyocytes. It will then discuss recent findings relevant to their involvement in heart disease.  相似文献   

10.
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.  相似文献   

11.
The onset of sudden cardiac death and large inter- and intra-familial clinical variability of hypertrophic cardiomyopathy pose an important clinical challenge. Cardiac magnetic resonance imaging is a high-resolution imaging modality that has become increasingly available in the past decade and has the unique possibility to demonstrate the presence of fibrosis or scar using late gadolinium enhancement imaging. As a result, the diagnostic and prognostic potential of cardiac magnetic resonance imaging has been extensively explored in acute and chronic ischaemic cardiomyopathy, as well as in several nonischaemic cardiomyopathies. This review aims to provide a critical overview of recently published studies on hypertrophic cardiomyopathy and discusses the role of cardiac magnetic resonance imaging in differentiating underlying causes of hypertrophic cardiomyopathy, such as familial hypertrophic cardiomyopathy, cardiac involvement in systemic disease and left ventricular hypertrophy due to endurance sports. Also, it demonstrates the use of cardiac magnetic resonance in risk stratification for the onset of sudden cardiac death, and early identification of asymptomatic family members of hypertrophic cardiomyopathy patients who are at risk for the development of hypertrophic cardiomyopathy. (Neth Heart J 2010;18:135-43.)  相似文献   

12.
Rothermel BA  Hill JA 《Autophagy》2007,3(6):632-634
In the setting of hemodynamic stress, such as occurs in hypertension or following myocardial infarction, the heart undergoes a compensatory hypertrophic growth response. Left unchecked, this hypertrophic response triggers myocyte death, ventricular dilation, diminished contractile performance, and a clinical syndrome of heart failure. For some years, autophagy has been implicated in heart failure. More recently, mechanistic studies have emerged which provide new insights into the molecular underpinnings of hemodynamic stress-induced cardiomyocyte autophagy. Further, these studies have begun to provide clues as to whether cardiomyocyte autophagy is adaptive, mitigating disease pathogenesis, or maladaptive, contributing to disease progression. Here, we discuss recent studies that both answer some questions and pose new ones.  相似文献   

13.
Chen XL  Zhao Y  Ke HP  Liu WT  Du ZF  Zhang XN 《Gene》2012,507(2):174-176
Danon disease is a rare X-linked lysosomal storage disease characterized by hypertrophic cardiomyopathy, myopathy and mental retardation, and is due to a primary defect in lysosome-associated membrane protein-2 (LAMP 2). More than 26 mutations in the LAMP2 gene have been described, including a small number of de novo mutations, some of which are suspected to be caused by germline mosaicism. Here, we describe the first molecularly documented evidence of somatic mosaicism for a LAMP2 mutation, identified in the asymptomatic mother of a boy with Danon disease caused by the frameshift mutation c.808dupG (p.A270Gfx3) within exon 6. In addition, in order to gain insight into the possible explanation for the mother's lack of phenotype, the level of somatic mosaicism and the X-chromosome inactivation pattern were investigated. This study provides new insight into the causes of phenotypic variability in female mutation-carriers and underlines the importance of parental molecular testing for accurate genetic counseling for Danon disease.  相似文献   

14.
15.
16.
Human familial hypertrophic cardiomyopathy is the most common Mendelian cardiovascular disease worldwide. Among the most severe presentations of the disease are those in families heterozygous for the mutation R403Q in β-cardiac myosin. Mice heterozygous for this mutation in the α-cardiac myosin isoform display typical familial hypertrophic cardiomyopathy pathology. Here, we study cardiomyocytes from heterozygous 403/+ mice. The effects of the R403Q mutation on force-generating capabilities and dynamics of cardiomyocytes were investigated using a dual carbon nanofiber technique to measure single-cell parameters. We demonstrate the Frank-Starling effect at the single cardiomyocyte level by showing that cell stretch causes an increase in amplitude of contraction. Mutant 403/+ cardiomyocytes exhibit higher end-diastolic and end-systolic stiffness than +/+ cardiomyocytes, whereas active force generation capabilities remain unchanged. Additionally, 403/+ cardiomyocytes show slowed relaxation dynamics. These phenotypes are consistent with increased end-diastolic and end-systolic chamber elastance, as well as diastolic dysfunction seen at the level of the whole heart. Our results show that these functional effects of the R403Q mutation are cell-intrinsic, a property that may be a general phenomenon in familial hypertrophic cardiomyopathy.  相似文献   

17.
Carnitine is an essential cofactor for the beta-oxidation of fats. Both hypertrophic and congestive cardiomyopathies have been reported in primary and secondary carnitine deficiency. Conversely in avian cardiomyopathy models abnormally elevated plasma and tissue carnitine concentrations have been described. We measured plasma carnitine concentrations in 25 cardiomyopathy patients. In 14 patients with either hypertrophic or congestive cardiomyopathy plasma carnitine concentrations were abnormally elevated. Patients with secondary cardiomyopathies tended to have normal carnitine values. One patient with systemic carnitine deficiency was diagnosed. Her cardiac function normalized with L-carnitine replacement. Six of 14 patients with high plasma carnitine concentrations died. None of the 10 with low or normal plasma carnitine have died. Plasma carnitine determination may be a useful adjunct in the diagnostic evaluation of idiopathic cardiomyopathy.  相似文献   

18.
19.
It has become evident that protein degradation by proteolytic enzymes, known as proteases, is partly responsible for cardiovascular dysfunction in various types of heart disease. Both extracellular and intracellular alterations in proteolytic activities are invariably seen in heart failure associated with hypertrophic cardiomyopathy, dilated cardiomyopathy, hypertensive cardiomyopathy, diabetic cardiomyopathy, and ischemic cardiomyopathy. Genetic cardiomyopathy displayed in different strains of hamsters provides a useful model for studying heart failure due to either cardiac hypertrophy or cardiac dilation. Alterations in the function of several myocardial organelles such as sarcolemma, sarcoplasmic reticulum, myofibrils, mitochondria, as well as extracellular matrix have been shown to be due to subcellular remodeling as a consequence of changes in gene expression and protein content in failing hearts from cardiomyopathic hamsters. In view of the increased activities of various proteases, including calpains and matrix metalloproteinases in the hearts of genetically determined hamsters, it is proposed that the activation of different proteases may also represent an important determinant of subcellular remodeling and cardiac dysfunction associated with genetic cardiomyopathy.  相似文献   

20.
MicroRNAs (miRNAs) are a class of non-coding RNAs of ∼22 nucleotides in length, and constitute a novel class of gene regulators by imperfect base-pairing to the 3′UTR of protein encoding messenger RNAs. Growing evidence indicates that miRNAs are implicated in several pathological processes in myocardial disease. The past years, we have witnessed several profiling attempts using high-density oligonucleotide array-based approaches to identify the complete miRNA content (miRNOME) in the healthy and diseased mammalian heart. These efforts have demonstrated that the failing heart displays differential expression of several dozens of miRNAs. While the total number of experimentally validated human miRNAs is roughly two thousand, the number of expressed miRNAs in the human myocardium remains elusive. Our objective was to perform an unbiased assay to identify the miRNOME of the human heart, both under physiological and pathophysiological conditions. We used deep sequencing and bioinformatics to annotate and quantify microRNA expression in healthy and diseased human heart (heart failure secondary to hypertrophic or dilated cardiomyopathy). Our results indicate that the human heart expresses >800 miRNAs, the majority of which not being annotated nor described so far and some of which being unique to primate species. Furthermore, >250 miRNAs show differential and etiology-dependent expression in human dilated cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM). The human cardiac miRNOME still possesses a large number of miRNAs that remain virtually unexplored. The current study provides a starting point for a more comprehensive understanding of the role of miRNAs in regulating human heart disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号