首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Role of Potassium Channels in Amyloid-Induced Cell Death   总被引:20,自引:1,他引:19  
Abstract: Basal forebrain cholinergic neurons are severely depleted early in Alzheimer's disease and appear particularly susceptible to amyloid β-peptide (Aβ) toxicity in vivo. To model this effect in vitro, a cholinergic septal cell line (SN56) was exposed to Aβ. SN56 cells exhibited a tetraethylammonium (TEA)-sensitive outward K+ current with delayed rectifier characteristics. Increases of 64% (±19; p < 0.02) and 44% (±12; p < 0.02) in K+ current density were noted 6–12 and 12–18 h following the addition of Aβ to SN56 cell cultures, respectively. Morphological observation and staining for cell viability showed that 25 ± 4 and 39 ± 4% of SN56 cells were dead after 48- and 96-h exposures to Aβ, respectively. Perfusion of SN56 cells with 10–20 mM TEA blocked 71 ± 6 to 92 ± 2% of the outward currents, widened action potentials, elevated [Ca2+]i, and inhibited 89 ± 14 and 68 ± 14% of the Aβ toxicity. High [K+]o, which depolarizes cell membranes and increases [Ca2+]i, also protected SN56 cells from Aβ toxicity. This effect appeared specific since glucose deprivation of SN56 cells did not alter K+ current density and TEA did not protect these cells from hypoglycemic cell death. Furthermore, Aβ was toxic to a dopaminergic cell line (MES23.5) that expressed a K+ current with delayed rectifier characteristics; K+ current density was not altered by Aβ and MES23.5 cells were not protected by TEA from Aβ toxicity. In contrast, a noncholinergic septal cell line (SN48) that shows minimal outward K+ currents was resistant to the toxicity of Aβ. These data suggest that a K+ channel with delayed rectifier characteristics may play an important role in Aβ-mediated toxicity for septal cholinergic cells.  相似文献   

2.
Summary Ionic currents from freshly dissociated rabbit corneal endothelial cells were examined using patch-clamp technology and a perforated patch technique. Whole-cell current recordings revealed a transient outward K+-selective current that was blockable in a dose-dependent manner by 4-aminopyridine (4-AP) and quinidine. This current is similar to the A-type current present in many excitable cells and is the first reported instance of such a current in any epithelial cell type. In addition to the transient current, an outwardly rectifying nonselective cation current was also observed. This current is also blocked by quinidine.To examine the possible role of these currents in the stromal volume regulatory function of the endothelium, corneas were perfused under a specular microscope with a glutathionebicarbonate Ringer's solution (GBR) or GBR plus either 1 mM quinidine or 10 mM 4-AP. For quinidine perfusions, control corneas swelled at a rate of 6 m/hr, while quinidine-perfused corneas swelled at a rate of 48 m/hr. For 4-AP perfusions, control corneas deswelled at a rate of –2 m/hr, while 4-AP perfused corneas swelled at a rate of 24 m/hr. One possible mechanism of the stromal swelling induced by these K+ channel blockers may be the result of loss of the K+ recycling pathway necessary for proper Na+/K+ ATPase function.We would like to thank Dr. William Bourne for the use of his specular microscopy corneal perfusion apparatus and Helen Hendrickson for her technical assistance. This work was supported by NIH grants EY06206, EY03282, EY06005, and an unrestricted award from Research to Prevent Blindness.  相似文献   

3.
Summary Patch-clamp studies of whole-cell ionic currents were carried out in parietal cells obtained by collagenase digestion of the gastric fundus of the guinea pig stomach. Applications of positive command pulses induced outward currents. The conductance became progressively augmented with increasing command voltages, exhibiting an outwardly rectifying current-voltage relation. The current displayed a slow time course for activation. In contrast, inward currents were activated upon hyperpolarizing voltage applications at more negative potentials than the equilibrium potential to K+ (E K). The inward currents showed time-dependent inactivation and an inwardly rectifying current-voltage relation. Tail currents elicited by voltage steps which had activated either outward or inward currents reversed at nearE K, indicating that both time-dependent and voltagegated currents were due to K+ conductances. Both outward and inward K+ currents were suppressed by extracellular application of Ba2+, but little affected by quinine. Tetraethylammonium inhibited the outward current without impairing the inward current, whereas Cs+ blocked the inward current but not the outward current. The conductance of inward K+ currents, but not outward K+ currents, became larger with increasing extracellular K+ concentration. A Ca2+-mobilizing acid secretagogue, carbachol, and a Ca2+ ionophore, ionomycin, brought about activation of another type of outward K+ currents and voltage-independent cation currents. Both currents were abolished by cytosolic Ca2+ chelation. Quinine preferentially inhibited this K+ current. It is concluded that resting parietal cells of the guinea pig have two distinct types of voltage-dependent K+ channels, inward rectifier and outward rectifier, and that the cells have Ca2+-activated K+ channels which might be involved in acid secretion under stimulation by Ca2+-mobilizing secretagogues.  相似文献   

4.
Summary Electrophysiological experiments showed that a tetrodotoxin (TTX) sensitive slowly inactivating Na+ current contributed to the excitability of the sensory neuron (SN1) that innervates the slow receptor muscle in the abdominal muscle receptor (MR1) of crayfish, Procambarus clarkii. Following either tetraethylammonium (TEA) blockage of the K+ delayed rectifier currents or exposure to high temperature, a depolarizing plateau potential was evoked by the slow Na+ current. Ca++ substitution by other divalent cations had no effect on the plateau potential, demonstrating that Ca++ is not involved in plateau potential genesis. Simultaneous intrasomatic and extraaxonic recordings coupled with 4-aminopyridine (4-AP) exposure indicated that the slowly inactivating Na+ current is primarily somatic, and does not contribute significantly to spiking.Abbreviations 4-AP 4-aminopyridine - HAP hyperpolarizing after-potential - MR1 slowly adapting muscle receptor organ - SR1 sensory neuron of MR1 - TEA tetraethylammonium - TTX tetrodotoxin  相似文献   

5.
Nystatin perforated-patch clamp and single-channel recording methods were used to characterize macroscopic and single-channel K+ currents and the effects of angiotensin II (AngII) in cultured rat adrenal glomerulosa cells. Two basic patterns of macroscopic current-voltage relationships were observed: type 1 exhibited a rapidly activating, noninactivating, voltage-dependent outward current and type 2 exhibited an inactivating voltage-dependent outward current attributed to charybdotoxin sensitive Ca++-dependent K+ channels. Most cells exhibited the type 1 pattern and experiments focused on this cell type. Cell-attached and inside-out patches were dominated by a single K+ channel class which exhibited an outward conductance of 12 pS (20 mm K+ pipette in cell-attached and inside-out configurations, 145 mm K+ in), a mean open time of 2 msec, and a weakly voltage-dependent low open probability that increased with depolarization. Channel open probability was reversibly inhibited by bath stimulation with AngII. At the macroscopic level, type 1 cell macroscopic K+ currents appeared comprised of two components: a weakly voltage-dependent current controlling the resting membrane potential (−85 mV) which appeared mediated by the 12 pS K+ channel and a rapidly activating, noninactivating voltage-dependent current activated above −50 mV. The presence of the second voltage-dependent K+ channel class was suggested by the effects of AngII, the blocking effects of quinidine and Cs+, and the properties of the weakly voltage-dependent K+ channel described. The K+ selectivity of the macroscopic current was demonstrated by the dependence of current reversal potentials on the K+ equilibrium potential and by the effects of K+ channel blockers, Cs+ and quinidine. AngII (10 pm to 1 nm) reversibly inhibited macroscopic K+ currents and this effect was blocked by the AT1 receptor antagonist losartin. Received: 6 August 1996/Revised: 15 November 1996  相似文献   

6.
Membrane potential and ionic currents were studied in cultured rabbit retinal pigment epithelial (RPE) cells using whole-cell patch clamp and perforated-patch recording techniques. RPE cells exhibited both outward and inward voltage-dependent currents and had a mean membrane capacitance of 26±12 pF (sd, n=92). The resting membrane potential averaged ?31±15 mV (n=37), but it was as high as ?60 mV in some cells. When K+ was the principal cation in the recording electrode, depolarization-activated outward currents were apparent in 91% of cells studied. Tail current analysis revealed that the outward currents were primarily K+ selective. The most frequently observed outward K+ current was a voltage- and time-dependent outward current (I K) which resembled the delayed rectifier K+ current described in other cells. I K was blocked by tetraethylammonium ions (TEA) and barium (Ba2+) and reduced by 4-aminopyridine (4-AP). In a few cells (3–4%), depolarization to ?50 mV or more negative potentials evoked an outwardly rectifying K+ current (I Kt) which showed more rapid inactivation at depolarized potentials. Inwardly rectifying K+ current (I KI) was also present in 41% of cells. I KI was blocked by extracellular Ba2+ or Cs+ and exhibited time-dependent decay, due to Na+ blockade, at negative potentials. We conclude that cultured rabbit RPE cells exhibit at least three voltage-dependent K+ currents. The K+ conductances reported here may provide conductive pathways important in maintaining ion and fluid homeostasis in the subretinal space.  相似文献   

7.
Agents which block T cell K+ currents can prohibit both proliferative and effector cell functions in T cells activated by mitogens or phorbol esters. This study examined the effects of some of these blocking agents on the immune responsiveness of guinea pig myelin basic protein (GPMBP)-reactive Lewis rat T lymphocytes, which are capable of mediating the adoptive transfer of experimental allergic encephalomyelitis (EAE), an accepted animal model for multiple sclerosis. Both the proliferative functions (DNA synthesis and cell blastogenesis) and the EAE transfer activities of GPMBP-reactive lymphocytes were examined following GPMBP-induced activation in the presence of agents shown to block the outwardly rectifying K+ current in these cells. At concentrations which completely inhibited DNA synthesis, as measured by [3H]thymidine incorporation, and cell blastogenesis, tetraethylammonium (TEA), 4-aminopyridine (4-AP) and methoxyverapamil (D600) completely blocked the subsequent adoptive transfer of EAE into naive syngeneic Lewis rats. The concentrations at which these blockers produced a 50% reduction in DNA synthesis were estimated to be 16, 1.6 and 32 µM for TEA, 4-AP and D-600, respectively, which were roughly equivalent to the EC50 to block the K+ current. Apamine, a potent Ca2+-activated K+ channel blocker, at a concentration several orders of magnitude higher than is necessary to block Ca2+-activated K+ channels, reduced the maximal K+ conductance in GPMBP-reactive T cell K+ channels by about 20%, but did not alter either [3H]thymidine incorporation or the adoptive transfer of EAE. These results indicate that delayed rectifier K+ channel blockers may prevent the activation of GPMBP-reactive T cells, thus prohibiting encephalitogenic effector cell functions.  相似文献   

8.
Transmembrane ion currents were studied in the somatic membrane of freshly isolated neurons from the spinal ganglia of early postnatal (younger than 15-day-old) rats. According to their dissimilar voltage dependence and different sensitivity to external application of tetraethylammonium (TEA) and 4-aminopyridine (4-AP), three types of outward potassium currents were identified. Fast-inactivating K+ current was activated at the most negative values of the membrane potential and showed the highest sensitivity to external application of 4-AP. The threshold for activation of slow-inactivating K+ current was within a −40 ... −30 mV range. Non-inactivating delay-rectified current showed the highest sensitivity to TEA. All three types of K+ currents could be found in all studied neurons of animals of three age groups: 1, 5 to 6, and 14 to 15 postnatal days. The mean density of fast-inactivating K+ current significantly increased during the first two weeks of postnatal ontogenesis. Within the studied period, the mode of a normal (Gaussian) distribution of fast K+ current shifted toward higher current density values. The mean density of slow-inactivating K+ current also increased with the age. Yet, the mean density of non-inactivating delay-rectified K+ current significantly dropped during the first five days of the postnatal development and remained stable during the following time interval.  相似文献   

9.
Whole-cell recordings were used to identify in MCF-7 human breast cancer cells the ion current(s) required for progression through G1 phase of the cell cycle. Macroscopic current-voltage curves were fitted by the sum of three currents, including linear hyperpolarized, linear depolarized and outwardly rectifying currents. Both linear currents, but not the outwardly rectifying current, were increased by 1 μm intracellular Ca2+ and blocked by 2 mm intracellular ATP. When tested at concentrations previously shown to inhibit proliferation by 50%, linogliride, glibenclamide and quinidine inhibited the linear hyperpolarized current, and quinidine and linogliride inhibited the linear depolarized current; none of these agents affected the outwardly rectifying current. In contrast, tetraethylammonium completely inhibited the outwardly rectifying current, but did not inhibit either linear current. Changing the bath solution to symmetric K+ shifted the reversal potential of the linear hyperpolarized current from near the K+ equilibrium potential (−84 mV) to −4 mV. Arrest of the cell cycle in early G1 by quinidine was associated with significantly smaller linear hyperpolarized currents, without a change in the linear depolarized or outwardly rectifying currents, but this reduction was not observed with arrest by lovastatin at a site ≈6 hr later in G1. The linear hyperpolarized current was significantly larger in ras-transformed than in untransformed cells. We conclude that the linear hyperpolarized current is an ATP-sensitive K+ current required for progression of MCF-7 cells through G1 phase. Received: 22 January 1999/Revised: 11 May 1999  相似文献   

10.
The patch clamp technique was applied to protoplasts isolated from the epidermis and pericycle of Arabidopsis roots and their plasma membrane currents investigated. In the whole cell configuration, all protoplasts from the epidermis exhibited depolarization‐activated time‐dependent outwardly rectifying (OR) currents whereas OR currents were present in only 50% of cells from the pericycle. The properties of the OR currents in the epidermis and pericycle were compared with respect to their selectivity, pharmacology and gating. The time‐dependent activation kinetics, selectivity and sensitivity to extracellular tetraethyl ammonium of the OR current in each cell type were not significantly different. The reversal potential (Erev) of the OR currents indicated that they were primarily due to the movement of K+. However, the gating properties of the OR currents from the epidermis differed markedly from those exhibited in the pericycle. Although both cell types displayed OR currents with voltage‐dependent gating modulated in a potassium‐dependent fashion [i.e. the activation threshold (V0.5) was displaced to more positive voltages as extracellular K+ increased], the OR currents in the epidermis also displayed voltage‐independent gating by extracellular K+ which dramatically regulated current density. In the present study, reducing extracellular K+ activity from 40 to 0.87 mm reduced the OR current density in epidermal cells by approximately 80%. The chord conductance of the OR current saturated as a function of extracellular K+ and could be fitted with a Michaelis–Menten function to yield a binding constant (Km) of 10.5 mm . The ability of other monovalent cations to substitute for K+‐gating of the OR currents was also investigated and shown to exhibit a relative sequence of K+ ≥ Rb+ > Cs+ > Na+ ≥ Li+ (Eisenmann sequence IV) with respect to efficacy of gating. Furthermore, single channel recordings demonstrated that channel activity rather than the single channel conductance was modulated by extracellular K+. In contrast, OR current density in the pericycle was largely independent of extracellular K+. It is suggested that the contrasting gating properties of the K+ channels in the epidermis and pericycle reflect their different physiological roles, particularly with respect to their role in K+ (nutrient) transport from the soil solution to the shoot.  相似文献   

11.
Human capillary endothelial cells (HCEC) in normal media contain noninactivating outwardly rectifying chloride currents, TEA-sensitive delayed rectifier K+ currents and an inward rectifier K+ current. Two additional ionic currents are induced in HCEC when the media are allowed to become conditioned: A Ca2+-activated K+ current (BKCA) that is sensitive to iberiotoxin is induced in 23.5% of the cells, a transient 4-AP-sensitive K+ current (A current) is induced in 24.7% of the cells, and in 22.3% of the cells both the transient and BKCA currents are coinduced. The EC50 for Ca2+ activation of the BKCA current in HCEC from conditioned media is 213 nM. RNA message for BKCA (hSlo clone) is undetecable after PCR amplification in control cells but is seen in those from conditioned cells. The induction of BKCA current is not blocked by conditioning with inhibitors of nitric oxide synthase, cyclo-oxgenase or lypo-oxygenase pathways. Apparently the characteristics of human endothelial cells are highly malleable and can be easily modified by their local environment. Received: 21 May 1998/Revised: 23 September 1998  相似文献   

12.
Basolateral K+ channels and their regulation during aldosterone- and thyroxine-stimulated Na+ transport were studied in the lower intestinal epithelium (coprodeum) of embryonic chicken in vitro. Isolated tissues of the coprodeum were mounted in Ussing chambers and investigated under voltage-clamped conditions. Simultaneous stimulation with aldosterone (1 mol·l-1) and thyroxine (1 mol·l-1) raised short-circuit current after a 1- to 2-h latent period. Maximal values were reached after 6–7 h of hormonal treatment, at which time transepithelial Na+ absorption was more than tripled (77±11 A·cm-2) compared to control (24±8 A·cm-2). K+ currents across the basolateral membrane with the pore-forming antibiotic amphotericin B and application of a mucosal-to-serosal K+ gradient. This K+ current could be dose dependently depressed by the K+ channel blocker quinidine. Fluctuation analysis of the short-circuit current revealed a spontaneous and a blocker-induced Lorentzian noise component in the power density spectra. The Lorentzian corner frequencies increased linearly with the applied blocker concentration. This enabled the calculation of single K+ channel current and K+ channel density. Single K+ channel current was not affected by stimulation, whereas the number of quinidine-sensitive K+ channels in the basolateral membrane increased from 11 to 26·106·cm-2 in parallel to the hormonal stimulation transepithelial Na+ transport. This suggests that the basolateral membrane is a physiological target during synergistic aldosterone and thyroxine regulation of transepithelial Na+ transport for maintaining intracellular K+ homeostasis.Abbreviations f frequency - f c Lorentzian corner frequency - g K single K+ channel conductance - HEPES N-2-hydroxyethylpiperazin-N'-2-ethansulfonic acid - i K single K+ channel current - IAmpho amphotericin B induced K+ current - I sc short-circuit current - I K quinidine blockable K+ current - I max maximally blocked current by quinidine - IC 50 half-maximal blocker concentration - k on, k off on- and off-rate coefficients of reversible single channel block by quinidine - M K number of conducting K+ channels - [Q] quinidine concentration - R t transepithelial resistance - S spectral density - S o Lorentzian plateau - TBM cells toad urinary bladder cell line Present address: University of California at Berkeley, Dept. of Molecular and Cell Biology Berkeley, CA 94720, USA  相似文献   

13.
Summary Physiological and morphological properties of rabbit, Oryctolagus cuniculus, olfactory bulb interneurons were characterized by using a thin slice preparation in combination with patch-clamp measurements and Lucifer Yellow fills. Two types of interneurons, periglomerular (PG) and juxtaglomerular (JG) cells, were unequivocally distinguished in the glomerular layer. Their properties were compared to those of mitral cells. PG cells closely resembled previously described periglomerular cells in their morphology. During current clamp recording these neurons were characterized by their lack of action potentials upon depolarization. Consistent with these results no Na+ currents could be elicited in voltage clamp experiments. Two types of outward K+ currents were distinguished: one which inactivated and one which did not. From their morphology JG cells appear to be either short axon cells or external tufted cells. JG cells always responded with a single, TTX-blockable action potential in response to maintained current injection. Two types of membrane currents were identified in JG cells during voltage clamp: a fast, inactivating Na+ current that was fully activated at — 80 mV, and a sustained outward current that shared some properties with a delayed rectifier K+ current. The particular relationship between the voltage dependence of the Na+ and K+ currents appeared to preclude repetitive spike activity.Abbreviations JG juxtraglomerular interneuron - LOT lateral olfactory tract - M/T mitral/tufted (cells) - PG periglomerular - SA short axon  相似文献   

14.
Accumulation of amyloid (Aβ) peptides has been suggested to be the primary event in Alzheimer's disease. In neurons, K+ channels regulate a number of processes, including setting the resting potential, keeping action potentials short, timing interspike intervals, synaptic plasticity, and cell death. In particular, A‐type K+ channels have been implicated in the onset of LTP in mammalian neurons, which is thought to underlie learning and memory. A number of studies have shown that Aβ peptides alter the properties of K+ currents in mammalian neurons. We set out to determine the effects of Aβ peptides on the neuronal A‐type K+ channels of Drosophila. Treatment of cells for 18 h with 1 μM Aβ1‐42 altered the kinetics of the A‐type K+ current, shifting steady‐state inactivation to more depolarized potentials and increasing the rate of recovery from inactivation. It also caused a decrease in neuronal viability. Thus it seems that alteration in the properties of the A‐type K+ current is a prelude to the amyloid‐induced death of neurons. This alteration in the properties of the A‐type K+ current may provide a basis for the early memory impairment that was observed prior to neurodegeneration in a recent study of a transgenic Drosophila melanogaster line over‐expressing the human Aβ1‐42 peptide. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

15.
A genomic clone encoding a mouse brain K+ channel (MBK1) was isolated, characterized and expressed in COS cells using the lipofection technique. Transfected COS cells expressed voltage-dependent K+ currents that activated within 20 ms at 0 mV and showed less than 10% inactivation during 250 ms depolarizing pulses at 60 mV. Expressed K+ currents were reversibly blocked by 4-aminopyridine and tetraethylammonium, and were moderately sensitive to dendrotoxin, but insensitive to charybdotoxin. Thus MBK1, expressed transiently in a mammalian cell line, exhibits features characteristic of non-inactivating K+ channels with a conspicuous insensitivity to charybdotoxin. Lipofection is, therefore, a valuable strategy for expression of channel proteins in mammalian cells.Abbreviations 4-AP 4 aminopyridine - TEA tetraethylammonium - CTX charybdotoxin - DTX dendrotoxin - V applied voltage - Vrev reversal potential - I current - G conductance - MBK1 mouse brain potassium channel 1 - TES N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid Correspondence to: M. Montal.  相似文献   

16.
β-Adrenergic Modulation of Glial Inwardly Rectifying Potassium Channels   总被引:1,自引:0,他引:1  
Abstract: Cultured spinal cord astrocytes (2–13 days in vitro) express several different potassium current types, including delayed rectifier, transient A-type, and inward rectifier (Kir) K+ currents. Of these, Kir is believed to be of critical importance in the modulation of extracellular [K+] in the CNS. Using the whole-cell patch-clamp technique, we analyzed modulation of Kir currents by β-adrenergic receptor activation. The selective β-adrenergic agonist isoproterenol (1–100 µM) and epinephrine (1–100 µM) each reduced peak Kir current amplitudes to 52.7 ± 12.5 and 63.6 ± 7.0%, respectively, at 100 µM. Forskolin (KD of ~25 µM), an activator of adenylate cyclase (AC), and dibutyryl-cyclic AMP (1 mM), a membrane-permeable analogue of cyclic AMP (cAMP), were each used to increase [cAMP]i, the product of AC, and resulted in similar reductions of Kir currents. By contrast, 1,9-dideoxyforskolin (1–50 µM), a forskolin analogue that does not activate AC, did not affect Kir currents, indicating that AC activity is a required element for Kir modulation. Three inhibitors of PKA—Rp-adenosine 3′,5′-cyclic monophosphothioate, H-7, and adenosine 3′,5′-cyclic monophosphate-dependent protein kinase inhibitor—failed to inhibit Kir current reduction by β-adrenergic agonists. These results indicate that β-adrenergic receptor ligands can modulate Kir currents and suggest that this modulation involves activation of AC but not protein kinase A. Such modulation may provide a mechanism by which neurons can modulate glial Kir currents and thereby may affect glial K+“spatial buffering” in the CNS.  相似文献   

17.
Single inward rectifier K+ channels were studied in Xenopus laevis embryonic myocytes. We have characterized in detail the channel which is most frequently observed (Kir) although we routinely observe three other smaller current levels with the properties of inward rectifier K+ channels (Kir(0.3), Kir(0.5) and Kir(0.7)). For Kir, slope conductances of inward currents were 10.3, 20.3, and 27.9 pS, in 60, 120 and 200 mM [K+] o respectively. Extracellular Ba2+ blocked the normally high channel activity in a concentration-dependent manner (K A = 7.8 μm, −90 mV). In whole-cell recordings of inward rectifier K+ current, marked voltage dependence of Ba2+ block over the physiological range of potentials was observed. We also examined current rectification. Following step depolarizations to voltages positive to E K , outward currents through Kir channels were not observed even when the cytoplasmic face of excised patches were exposed to Mg2+-free solution at pH 9.1. This was probably also true for Kir(0.3), Kir(0.5) and Kir(0.7) channels. We then examined the possibility of modulation of Kir channel activity and found neither ATP nor GTP-γS had any effect on Kir channel activity when added to the solution perfusing the cytoplasmic face of a patch. Kinetic analysis revealed Kir channels with a single open state (mean dwell time 72 msec) and two closed states (time constants 1.4, 79 msec). These results suggest that the native Kir channels of Xenopus myocytes have similar properties to the cloned strong inward rectifier K+ channels, in terms of conductance, kinetics and barium block but does show some differences in the effects of modulators of channel activity. Furthermore, skeletal muscle may contain either different inward rectifier channels or a single-channel type which can exist in stable subconductance states. Received: 16 September 1996/Revised: 14 March 1997  相似文献   

18.
Analysis of the mechanisms underlying cardiac excitability can be faciliated greatly by mutations that disrupt ion channels and receptors involved in this excitability. With an extensive repertoire of such mutations, Drosophila provides the best available genetic model for these studies. However, the use of Drosophila for this purpose has been severely handicapped by lack of a suitable preparation of heart and a complete lack of knowledge about the ionic currents that underlie its excitability. We describe a simple preparation to measure heartbeat in Drosophila. This preparation was used to ask if heartbeat in Drosophila is myogenic in origin, and to determine the types of ion channels involved in influencing the heart rate. Tetrodotoxin, even at a high concentration of 40 μM, did not affect heart rate, indicating that heartbeat may be myogenic in origin and that it may not be determined by Na+ channels. Heart rate was affected by PN200–110, verapamil, and diltiazem, which block vertebrate L-type Ca2+ channels. Thus, L-type channels, which contribute to the prolonged plateau of action potentials in vertebrate heart, may play a role in Drosophila cardiac excitability. It also suggests that Drosophila heart is subject to a similar intervention by organic Ca2+ channel blockers as the vertebrate heart. A role for K+ currents in the function of Drosophila heart was suggested by an effect of tetraethylammonium, which blocks all the four identified K+ currents in the larval body wall muscles, and quinidine, which blocks the delayed rectifier K+ current in these muscles. The preparation described here also provides an extremely simple method for identifying mutations that affect heart rate. Such mutations and pharmacological agents will be very useful for analyzing molecular components of cardiac excitability in Drosophila. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
The weakly electric fish Gymnotus carapo emits a triphasic electric organ discharge generated by muscle-derived electrocytes, which is modified by environmental and physiological factors. Two electrode current clamp recordings in an in vitro preparation showed that Gymnotus electrocytes fired repetitively and responded with plateau potentials when depolarized. This electrophysiological behavior has never been observed in electrocytes from related species. Two types of plateaus with different thresholds and amplitudes were evoked by depolarization when Na+-dependent currents were isolated in a K+- and Ca2+-free solution containing TEA and 4-AP. Two electrode voltage clamp recordings revealed a classical fast activating–inactivating Na+ current and two persistent Na+-dependent currents with voltage-dependencies consistent with the action potential (AP) and the two plateaus observed under current clamp, respectively. The three currents, the APs and the plateaus were reduced by TTX, and were absent in Na+-free solution. The different Na+-dependent currents in Gymnotus electrocytes may be targets for the modifications of the electric organ discharge mediated by environmental and physiological factors.  相似文献   

20.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. In the giant-celled green algaChara corallina, K+ currents in the plasmalemma were measured during the action potential and when the cell was depolarized to the K+ equilibrium potential in high external K+ concentrations. Currents in both conditions were reduced by externally added tetraethylammonium (TEA+), Ba2+, Na+ and Cs+. In contrast to inhibition by TEA+, the latter three ions inhibited inward K+ current in a voltage-dependent manner, and reduced inward current more than outward. Ba2+ and Na+ also appeared to inhibit outward current in a strongly voltage-dependent manner. The blockade by Cs+ is studied in more detail in the following paper. TEA+ inhibited both inward and outward currents in a largely voltage-independent manner, with an apparentK D of about 0.7 to 1.1mm, increasing with increasing external K+. All inhibitors reduced current towards a similar linear leak, suggesting an insensitivity of the background leak inChara to these various K+ channel inhibitors. The selectivity of the channel to various monovalent cations varied depending on the method of measurement, suggesting that ion movement through the K+-selective channel may not be independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号