首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
NMR shielding constants are calculated for the base protons of duplexes formed by the dodecamer d(CGTGAATTCGCG) and the decamer d(CCAAGATTGG). A good agreement with experimental data is obtained for B-DNA helices in which the wobble GT and GA pairs are in the plane of the corresponding GC pairs of the parent duplexes formed by d(CGCGAATTCGCG) and d(CCAAGCTTGG), if the glycosyl bonds of T and G or A and G are symmetrical with respect to the dyad axis of the Watson-Crick GC pair. Interaction energy calculations show that this type of geometrical arrangement, which implies a distortion of the ribonphosphate backbone of both strands of the duplexes are more stable than those in which only one strand has its conformation modified by the presence of the wobble pair. For the duplex containing the GA pair, NMR chemical shifts as well as interaction energy computations favour the Watson-Crick hydrogen bonding scheme. The variation of the different contributions (intrastrand, interstrand, pair-pair) to the interaction energy between the bases of the duplexes, with the geometrical arrangement of the wobble pairs, is reported.  相似文献   

3.
We have used the elementary generator matrices outlined in the preceding paper to examine the conformational plasticity of the nucleic acid double helix. Here we investigate kinked DNA structures made up of alternating B- and A-type helices and intrinsically curved duplexes perturbed by the intercalation of ligands. We model the B-to-A transition by the lateral translation of adjacent base pairs, and the intercalation of ligands by the vertical displacement of neighboring residues. We report a complete set of average configuration-dependent parameters, ranging from scalars (i.e., persistence lengths) to first- and second-order tensor parameters (i.e., average second moments of inertia), as well as approximations of the associated spatial distributions of the DNA and their angular correlations. The average structures of short chains (of lengths less than 100 base pairs) with local kinks or intrinsically curved sequences are essentially rigid rods. At the smallest chain lengths (10 base pairs), the kinked and curved chains exhibit similar average properties, although they are structurally perturbed compared to the standard B-DNA duplex. In contrast, at lengths of 200 base pairs, the curved and kinked chains are more compact on average and are located in a different space from the standard B- or A-DNA helix. While A-DNA is shorter and thicker than B-DNA in x-ray models, the long flexible A-DNA helix is thinner and more extended on average than its B-DNA counterpart because of more limited fluctuations in local structure. Curved polymers of 50 base pairs or longer also show significantly greater asymmetry than other DNAs (in terms of the distribution of base pairs with respect to the center of gravity of the chain). The intercalation of drugs in the curved DNA straightens and extends the smoothly deformed template. The dimensions of the average ellipsoidal boundaries defining the configurations of the intercalated polymers are roughly double those of the intrinsically curved chain. The altered proportions and orientations of these density functions reflect the changing shape and flexibility of the double helix. The calculations shed new light on the possible structural role of short A-DNA fragments in long B-type duplexes and also offer a model for understanding how GC-specific intercalative ligands can straighten naturally curved DNA. The mechanism is not immediately obvious from current models of DNA curvature, which attribute the bending of the chain to a perturbed structure in repeating tracts of A · T base pairs. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The crystal structure of the DNA dodecamer duplex CATGGGCCCATG lies on a structural continuum along the transition between A- and B-DNA. The dodecamer possesses the normal vector plot and inclination values typical of B-DNA, but has the crystal packing, helical twist, groove width, sugar pucker, slide and x-displacement values typical of A-DNA. The structure shows highly ordered water structures, such as a double spine of water molecules against each side of the major groove, stabilizing the GC base pairs in an A-like conformation. The different hydration of GC and AT base pairs provides a physical basis for solvent-dependent facilitation of the A↔B helix transition by GC base pairs. Crystal structures of CATGGGCCCATG and other A/B-DNA intermediates support a ‘slide first, roll later’ mechanism for the B→A helix transition. In the distribution of helical parameters in protein–DNA crystal structures, GpG base steps show A-like properties, reflecting their innate predisposition for the A conformation.  相似文献   

5.
Abstract

The crystal structures of five double helical DNA fragments containing non-Watson-Crick complementary base pairs are reviewed. They comprise four fragments containing G·T base pairs: two deoxyoctamers d(GGGGCTCC) and d(GGGGTCCC) which crystallise as A type helices; a deoxydodecamer d(CGCGAATTTGCG) which crystallises in the B-DNA conformation; and the deoxyhexamer d(TGCGCG), which crystallises as a Z-DNA helix. In all four duplexes the G and T bases form wobble base pairs, with bases in the major tautomer forms and hydrogen bonds linking N1 of G with 02 of T and 06 of G with N3 of T. The X-ray analyses establish that the G·T wobble base pair can be accommodated in the A, B or Z double helix with minimal distortion of the global conformation. There are, however, changes in base stacking in the neighbourhood of the mismatched bases. The fifth structure, d(CGCGAATTAGCG), contains the purine purine mismatch G·A where G is in the anti and A in the syn conformation. The results represent the first direct structure determinations of base pair mismatches in DNA fragments and are discussed in relation to the fidelity of replication and mismatch recognition.  相似文献   

6.
Three crystal structures containing the entire Sp1 consensus sequence d(GGGGCGGGG) with two or three additional base-pairs on either the 5' or 3' ends and overhangs have been determined. Despite the different lengths of DNA in the pseudo-dodecamers and pseudo-tridecamer, all three structures form A-DNA duplexes that share a common set of crystal contacts, including a T*(G.C) base triplet and a 5'-overhang that flips out and away from the helical axes to form a Hoogsteen base-pair with the 3'-overhang of a symmetry mate. The global conformations of the three structures differ, however, in the widths of their respective major grooves, the lengths of the molecules, and the extent of crystal packing. The structures were determined from crystals grown in an unusual precipitant for A-DNA, polyethylene glycol (PEG) 400, in combination with polyamines or ions; cobalt hexamine for the pseudo-tridecamer, and spermidine for the pseudo-dodecamers. As the Sp1 binding site is a target for antiviral and anticancer drugs, pseudo-dodecamer crystals were soaked with one such antiviral and anticancer compound, P4N. Although P4N was not visualized unambiguously in the electron density maps, the effect of the drug is evident from significant differences in the lattice constants, crystal packing, and overall conformation of the structure.  相似文献   

7.
A circular dichroism study was conducted on the solution structure of several different oligonucleotides, whose X-ray structures have been solved. It is suggested that in aqueous solution the oligonucleotides can form structures that maintain geometrical elements which are typical of B-DNA, A-DNA, and their intermediate forms. It is shown that 5'GGATGGGAG:5'CTCCCATCC, which forms an A-DNA helix in the crystal state (McCall et al. 1986), in aqueous solution maintains an A-DNA like structure at temperatures below 10 degrees C. At temperatures between 10 degrees C and 25 degrees C it shows a tendency to form an intermediate structure between A-DNA and B-DNA. Also, it is shown that TFE does not cause a transition from B-DNA to A-DNA helix in short DNA fragments, but instead disrupts the helix.  相似文献   

8.
The crystal structure of the self-complementary chimeric decamer duplex r(C)d(CGGCGCCG)r(G), with RNA base pairs at both termini, has been solved at 1.9 A resolution by the molecular replacement method and refined to an R value of 0.145 for 2,314 reflections. The C3'-endo sugar puckers of the terminal riboses apparently drive the entire chimeric duplex into an A-DNA conformation, in contrast to the B-DNA conformation adopted by the all-deoxy decamer of the same sequence. Five symmetry related duplexes encapsulate a spermine molecule which interacts with ten phosphate groups, both directly and through water molecules to form multiple ionic and hydrogen bonding interactions. The spermine interaction severely bends the duplexes by 31 degrees into the major groove at the fourth base pair G(4).C(17), jolts it and slides the 'base plate' into the minor groove. This base pair, together with the adjacent base pair in the top half and the corresponding pseudo two-fold related base pairs in the bottom half, form four minor groove base-paired multiples with the terminal base pairs of two neighboring duplexes.  相似文献   

9.
We calculated the interatomic distances between all couples of non-hydrogen atoms belonging to the neighboring Watson-Crick base pairs in the available crystal structures of DNA. Their standard deviations revealed remarkably large differences in the variability of the base stacking geometries of the particular steps. In line with experimental studies in solution, (CpA)-(TpG) and (TpA).(TpA) were identified as the most variable or flexible steps in the crystal structures of B-DNA. On the other hand, base stacking geometries of the (ApT).(ApT) steps were the most invariant, which was very surprising because all three steps composed only of C and G were much more flexible. This finding suggests that conformational stability of DNA and the rigidity have different origins. Furthermore, the nucleotide sequence dependence of the flexibility was almost reversed in A-DNA because the most flexible steps in B-DNA were the least flexible in A-DNA. The most invariant steps of B-DNA were variable in A-DNA. The (ApT).(ApT) step was a notable exception to this rule because it belonged to the most rigid steps in both B-DNA and A-DNA. The present results are fully consistent with the properties that poly(dA-dT).poly(dA-dT), poly(dA).poly(dT), poly(dAdC).poly(dG-dT) and poly(dA-dG).poly(dC-dT) exhibit in solution.  相似文献   

10.
W N Hunter  T Brown    O Kennard 《Nucleic acids research》1987,15(16):6589-6606
X-ray diffraction techniques have been used to characterise the crystal and molecular structure of the deoxyoligomer d(C-G-C-A-A-A-T-T-C-G-C-G) at 2.5A resolution. The final R factor is 0.19 with the location of 78 solvent molecules. The oligomer crystallises in a B-DNA type conformation with two strands coiled about each other to produce a duplex. This double helix consists of four A.T and six G.C Watson-Crick base pairs and two C.A mispairs. The mismatched base pairs adopt a "wobble" type structure with the cytosine displaced laterally into the major groove, the adenine into the minor groove. We have proposed that the two close contacts observed in the C.A pairing represent two hydrogen bonds one of which results from protonation of adenine. The mispairs are accommodated in the double helix with small adjustments in the conformation of the sugar-phosphate backbone. Details of the backbone conformation, base stacking interactions, thermal parameters and the hydration are now presented and compared with those of the native oligomer d(C-G-C-G-A-A-T-T-C-G-C-G) and with variations of this sequence containing G.T and G.A mispairs.  相似文献   

11.
Hydration around the DNA fragment d(C5T5).(A5G5) is presented from two molecular dynamics simulations of 10 and 12 ns total simulation time. The DNA has been simulated as a flexible molecule with both the CHARMM and AMBER force fields in explicit solvent including counterions and 0.8 M additional NaCl salt. From the previous analysis of the DNA structure B-DNA conformations were found with the AMBER force-field and A-DNA conformations with CHARMM parameters. High-resolution hydration patterns are compared between the two conformations and between C.G and T.A base-pairs from the homopolymeric parts of the simulated sequence. Crystallographic results from a statistical analysis of hydration sites around DNA crystal structures compare very well with the simulation results. Differences between the crystal sites and our data are explained by variations in conformation, sequence, and limitations in the resolution of water sites by crystal diffraction. Hydration layers are defined from radial distribution functions and compared with experimental results. Excellent agreement is found when the measured experimental quantities are compared with the equivalent distribution of water molecules in the first hydration shell. The number of water molecules bound to DNA was found smaller around T.A base-pairs and around A-DNA as compared to B-DNA. This is partially offset by a larger number of water molecules in hydrophobic contact with DNA around T.A base-pairs and around A-DNA. The numbers of water molecules in minor and major grooves have been correlated with helical roll, twist, and inclination angles. The data more fully explain the observed B-->A transition at low humidity.  相似文献   

12.
The crystal structures of five double helical DNA fragments containing non-Watson-Crick complementary base pairs are reviewed. They comprise four fragments containing G.T base pairs: two deoxyoctamers d(GGGGCTCC) and d(GGGGTCCC) which crystallise as A type helices; a deoxydodecamer d(CGCGAATTTGCG) which crystallises in the B-DNA conformation; and the deoxyhexamer d(TGCGCG), which crystallises as a Z-DNA helix. In all four duplexes the G and T bases form wobble base pairs, with bases in the major tautomer forms and hydrogen bonds linking N1 of G with O2 of T and O6 of G with N3 of T. The X-ray analyses establish that the G.T wobble base pair can be accommodated in the A, B or Z double helix with minimal distortion of the global conformation. There are, however, changes in base stacking in the neighbourhood of the mismatched bases. The fifth structure, d(CGCGAATTAGCG), contains the purine purine mismatch G.A where G is in the anti and A in the syn conformation. The results represent the first direct structure determinations of base pair mismatches in DNA fragments and are discussed in relation to the fidelity of replication and mismatch recognition.  相似文献   

13.
Abstract

The crystal structure of d(CCCCGGGG) has been determined at a resolution of 2.25Å. The oligomers crystallize as A-DNA duplexes occupying crystallographic two-fold axes. The backbone conformation is, in general, similar to that observed in previously reported crystal structures of A-DNA fragments, except for the central linkage, where it adopts an extended structure resulting from all trans conformation at the P-05′-C5′-C4′ bonds. This type of conformation facilitates interstrand stacking between the guanines at the C-G site. The local helix twist at this step is very small (25°) compared to an overall average of 33.5°. The unique structure of the C-G base-pair step, namely the extended backbone and the distinct stacking geometry, may be an important feature in the recognition mechanism between double- stranded DNA molecules and restriction endonucleases such as Msp I, which cuts the sequence CCGG very specifically with a rate unaffected by neighboring base pairs.  相似文献   

14.
Three empirical potentials of the Lennard-Jones type taken from literature were used to calculate van der Waals contributions to the base-pair couples stacking energies in B-DNA and A-DNA type double helical conformations. The information obtained can be summarized as follows: (1) Purine-pyrimidine and purine-purine (pyrimidine-pyrimidine in the complementary strand) sequences preferred right-handed helical arrangement, whereas pyrimidine-purine sequences favoured left-handed (C-G) or unwound (T-A) stacking geometry; in the latter case this only held for B- but not A-DNA (the C-G sequence was not studied in A-DNA owing to difficulties (see below) with the G amino group in B-DNA); (2) Positive propeller twist of base-pairs was stable in both B- and A-DNA; the thymine methyl group promoted the propeller and this effect was strongest in the A-T step; (3) Tilt of base pairs occurred around zero in B-DNA and between 15-20 degrees C in A-DNA, in agreement with the experimental observations; (4) Vertical separation of base pairs was optimal within 0.33-0.34 nm for B-DNA and around 0.29 nm for A-DNA using the 9-6 potential. The 12-6 potential gave similar results with B-DNA as the 9-6 potential if, however, base pairs were separated by 0.35-0.36 nm; (5) The calculated effect of the guanine amino group was substantially stronger than expected on the basis of data derived from X-ray diffraction studies of oligonucleotide single crystals; (6) In comparison with the 9-6 potential, the 12-6 potential provided more strict energy minima. In summary, the empirical potentials reproduce, at least semiquantitatively, many but not all DNA properties; this should be taken into account whenever the potentials are used for prediction purposes.  相似文献   

15.
Cytosine methylation or bromination of the DNA sequence d(GGCGCC)2 is shown here to induce a novel extended and eccentric double helix, which we call E-DNA. Like B-DNA, E-DNA has a long helical rise and bases perpendicular to the helix axis. However, the 3'-endo sugar conformation gives the characteristic deep major groove and shallow minor groove of A-DNA. Also, if allowed to crystallize for a period of time longer than that yielding E-DNA, the methylated sequence forms standard A-DNA, suggesting that E-DNA is a kinetically trapped intermediate in the transition to A-DNA. Thus, the structures presented here chart a crystallographic pathway from B-DNA to A-DNA through the E-DNA intermediate in a single sequence. The E-DNA surface is highly accessible to solvent, with waters in the major groove sitting on exposed faces of the stacked nucleotides. We suggest that the geometry of the waters and the stacked base pairs would promote the spontaneous deamination of 5-methylcytosine in the transition mutation of dm5C-dG to dT-dA base pairs.  相似文献   

16.
Normal modes of vibration of DNA in the low-frequency region (10-300 cm-1 interval) have been identified from Raman spectra of crystals of B-DNA [d(CGCAAATTTGCG)], A-DNA [r(GCG)d(CGC) and d(CCCCGGGG)], and Z-DNA [d(CGCGCG) and d(CGCGTG)]. The lowest vibrational frequencies detected in the canonical DNA structures--at 18 +/- 2 cm-1 in the B-DNA crystal, near 24 +/- 2 cm-1 in A-DNA crystals, and near 30 +/- 2 cm-1 in Z-DNA crystals--are shown to correlate well with the degree of DNA hydration in the crystal structures, as well as with the level of hydration in calf thymus DNA fibers. These findings support the assignment [H. Urabe et al. (1985) J. Chem. Phys. 82, 531-535; C. Demarco et al. (1985) Biopolymers 24, 2035-2040] of the lowest frequency Raman band of each DNA to a helix mode, which is dependent primarily upon the degree of helix hydration, rather than upon the intrahelical conformation. The present results show also that B-, A-, C-, and Z-DNA structures can be distinguished from one another on the basis of their characteristic Raman intensity profiles in the region of 40-140 cm-1, even though all structures display two rather similar and complex bands centered within the intervals of 66-72 and 90-120 cm-1. The similarity of Raman frequencies for B-, A-, C-, and Z-DNA suggests that these modes originate from concerted motions of the bases (librations), which are not strongly dependent upon helix backbone geometry or handedness. Correlation of the Raman frequencies and intensities with the DNA base compositions suggests that the complex band near 90-120 cm-1 in all double-helix structures is due to in-plane librational motions of the bases, which involve stretching of the purine-pyrimidine hydrogen bonds. This would explain the centering of the band at higher frequencies in structures containing G.C pairs (greater than 100 cm-1) than in structures containing A.T pairs (less than 100 cm-1), consistent with the strengths of G.C and A.T hydrogen bonding.  相似文献   

17.
F Eisenhaber  J H Mannik  V G Tumanyan 《Biopolymers》1990,29(10-11):1453-1464
Being interested in possible effects of sequence-dependent hydration of B-DNA with mixed sequence in fibers, we performed a series of Monte Carlo calculations of hydration of polydeoxyribonucleotides in B form, considering all sequences with dinucleotide repeat. The computational results allow the ten base-stacking types to be classified in accordance with their primary hydration in the minor groove. As a rule, the minor groove is occupied by two water molecules per base pair in the depth of the groove, which are located nearly midway between the planes of successive base pairs and symmetrically according to the dyad there. The primary hydration of the major groove depends on the type of the given base pair. The coordinates of 3 water molecules per base pair in the depth of the major groove are determined by the type of this pair together with its position and orientation in the helix, and are practically independent on the adjacent base pairs. A/T-homopolymer tracts do not fit into this hydration pattern; the base pair edges are hydrated autonomously in both grooves. Analysis of the Li-B-DNA x-ray diffraction intensities reveals those two water positions in the minor groove. In the major groove, no electronic density peaks in sufficient distance from the base edges were found, thus confirming the absence of any helical invariance of primary hydration in this region. With the help of the rules proposed in this paper it is possible to position the water molecules of the first hydration shell in the grooves of canonical B-DNA for any given sequence.  相似文献   

18.
U Heinemann  C Alings    M Bansal 《The EMBO journal》1992,11(5):1931-1939
The self-complementary DNA fragment CCGGCGCCGG crystallizes in the rhombohedral space group R3 with unit cell parameters a = 54.07 A and c = 44.59 A. The structure has been determined by X-ray diffraction methods at 2.2 A resolution and refined to an R value of 16.7%. In the crystal, the decamer forms B-DNA double helices with characteristic groove dimensions: compared with B-DNA of random sequence, the minor groove is wide and deep and the major groove is rather shallow. Local base pair geometries and stacking patterns are within the range commonly observed in B-DNA crystal structures. The duplex bears no resemblance to A-form DNA as might have been expected for a sequence with only GC base pairs. The shallow major groove permits an unusual crystal packing pattern with several direct intermolecular hydrogen bonds between phosphate oxygens and cytosine amino groups. In addition, decameric duplexes form quasi-infinite double helices in the crystal by end-to-end stacking. The groove geometries and accessibilities of this molecule as observed in the crystal may be important for the mode of binding of both proteins and drug molecules to G/C stretches in DNA.  相似文献   

19.
Adjacent GxU wobble base pairs are frequently found in rRNA. Atomic structures of small RNA motifs help to provide a better understanding of the effects of various tandem mismatches on duplex structure and stability, thereby providing better rules for RNA structure prediction and validation. The crystal structure of an RNA duplex containing the sequence r(GGUAUUGC-GGUACC)2 has been solved at 2.1 A resolution using experimental phases. Novel refinement strategies were needed for building the correct solvent model. At present, this is the only short RNA duplex structure containing 5'-U-U-3'/3'-G-G-5' non-symmetric tandem GxU wobble base pairs. In the 14mer duplex, the six central base pairs are all displaced away from the helix axis, yielding significant changes in local backbone conformation, helix parameters and charge distribution that may provide specific recognition sites for biologically relevant ligand binding. The greatest deviations from A-form helix occur where the guanine of a wobble base pair stacks over a purine from the opposite strand. In this vicinity, the intra-strand phosphate distances increase significantly, and the major groove width increases up to 3 A. Structural comparisons with other short duplexes containing symmetrical tandem GxU or GxT wobble base pairs show that nearest-neighbor sequence dependencies govern helical twist and the occurrence of cross-strand purine stacks.  相似文献   

20.
DNA oligonucleotides with dA and dU residues can form duplexes with trans d(A · U) base pairing and the sugar-phosphate backbone in a parallel-stranded orientation, as previously established for oligonucleotides with d(A · T) base pairs. The properties of such parallel-stranded DNA (ps-DNA) 25-mer duplexes have been characterized by absorption (uv), CD, ir, and fluorescence spectroscopy, as well as by nuclease sensitivity. Comparisons were made with duplex molecules containing (a) dT in both strands, (b) dU in one strand and dT in the second, and (c) the same base combinations in reference antiparallel-stranded (aps) structures. Thermodynamic analysis revealed that total replacement of deoxythymine by deoxyuridine was accompanied by destabilization of the ps-helix (reduction in Tm by −13°C in 2 mM MgGl2, 10 mM Na-cacodylate). The U-containing ps-helix (U1 · U2) also melted 14°C lower than the corresponding aps-helix under the same ionic conditions; this difference was very close to that observed between ps and aps duplexes with d(A · T) base pairs. Force field minimized structures of the various ps and aps duplexes with either d(A · T) or d(A · U) base pairs ps/aps and dT/dU combinations are presented. The energy-minimized helical parameters did not differ significantly between the DNAs containing dT and dU. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号