首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the binding of five HRP-conjugated lectins to rabbit tooth germs at the cap and late bell stages of development. The results revealed some changes in the glycosylation patterns of the glycoconjugates. Sugar residues, such as α-D-mannose, methyl-D-glucose, N-acetylglucosamine, β-D-galactosamine, D-galactose, and sialic acid, were detectable in some components of the tooth germs. The most conspicuous developmental change was increased binding of Con A and WGA. These lectins showed, at the cap stage, moderate binding to the (pre)-ameloblasts and (pre)-odontoblasts. With further development to the late bell stage, but prior to the achievement of well-defined morphological-functional characteristics, the odontoblasts and ameloblasts displayed considerable amounts of α-D-mannose, α-D-glucose as well as β-D-acetylglucosamine and sialic acid. Appropriate control studies confirmed the specificity of the binding of the lectins. Two lectins (DBA and PNA) with known specificity for N-acetylgalactosamine groups were bound by the basement membranes in tooth germs at the cap stage. A third lectin (RCA) with the same specificity did not produce any detectable staining in the same material. Further studies must be planned to determine the specific functions and significance of lectin-HRP-binding glycoconjugates in odontogenesis. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The appearance, cellular distribution, and changes of sugar residues during tooth development in adults of the polyphyodont, Liolaemus gravenhorsti, were investigated by using horseradish–peroxidase–conjugate lectins (lectin–HRP). With Con A (Canavalia ensiformis), the ameloblasts (late bell stage) show granular supranuclear positivity and also at the Golgi zone and on their tomes process. Reactivity also appears at the apical surface of the odontoblasts and odontoblastic process. With WGA (Triticum vulgaris), the tooth germs (late bell stage) show cytoplasmatic granular positivity in the ameloblast cells, Golgi regions, and in a lesser extent of the cytoplasm. Also, the apical surface and the odontoblastic process react. WGA reaction is depressed following sialidase treatment. The significance in tooth germs of α-D -mannose, α-D -glucose as well as β-D -N-acetylglucosamine and sialic acid is difficult to ascertain. These oligosaccharides may have some significance in odontogenesis. In fact, Con A-HRP- and WGA-HRP-binding components in ameloblasts and odontoblasts may be functionally related to molecules that are thought to contribute to odontogenesis in lizards. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Summary The lectin-binding patterns of the cells involved in amelogenesis and dentinogenesis in developing teeth of rats, were studied. Undifferentiated odontogenic epithelia exhibited very slight staining with almost all of the lectins examined. The lectin-staining affinities of secretory ameloblasts could be divided into two categories: Concanavalin-A (Con-A), Wheat germ agglutinin (WGA) and Soybean agglutinin (SBA) binding occurred from the middle to apical cytoplasm, whereas Ricinus communis agglutinin-I (RCA-I) and Ulex europeus I (UEA-I) binding predominated in the basal regions. The cells of the stratum intermedium exhibited relatively stranges lectin staining, which appeared to be dependent on ameloblastic maturation. The basement membranes in undifferentiated epithelia were markedly positive for lectin binding. Odontoblasts showed moderate Con-A staining on the apical side of the cells, as well as slight-to-moderate reactions with WGA and SBA. Pulp cells and dental papillae showed slight-to-moderate lectin staining, and predentin and dentin were also moderately positive for Con-A and RCA-I binding and slightly so for WGA and SBA. The lectin-binding affinities were enhanced during the formation of enamel and dentin, and appeared to be dependent on the degree of cellular differentiation in ameloblasts and odontoblasts.  相似文献   

4.
In tooth development matrix metalloproteinases (MMPs) are under the control of several regulatory mechanisms including the upregulation of expression by inducers and downregulation by inhibitors. The aim of the present study was to monitor the occurrence and distribution pattern of the extracellular matrix metalloproteinase inducer (EMMPRIN), the metalloproteinases MMP-2 and MT1-MMP and caveolin-1 during the cap and bell stage of rat molar tooth germs by means of immunocytochemistry. Strong EMMPRIN immunoreactivity was detected on the cell membranes of ameloblasts and cells of the stratum intermedium in the bell stage of the enamel organ. Differentiating odontoblasts exhibited intense EMMPRIN immunoreactivity, especially at their distal ends. Caveolin-1 immunoreactivity was evident in cells of the internal enamel epithelium and in ameloblasts. Double immunofluorescence studies revealed a focal co-localization between caveolin-1 and EMMPRIN in ameloblastic cells. Finally, western blotting experiments demonstrated the expression of EMMPRIN and caveolin-1 in dental epithelial cells (HAT-7 cells). A substantial part of EMMPRIN was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. The differentiation-dependent co-expression of MMPs with EMMPRIN in the enamel organ and in odontoblasts indicates that EMMPRIN takes part in the induction of proteolytic enzymes in the rat tooth germ. The localization of EMMPRIN in membrane rafts provides a basis for further investigations on the role of caveolin-1 in EMMPRIN-mediated signal transduction cascades in ameloblasts.  相似文献   

5.
6.
Beta–catenin is a multi–functional molecule that is involved in both cell–cell adhesion and signaling. We analyzed changes in β–catenin gene expression during mouse molar tooth development by in situ hybridization. Prominent up–regulation of the expression of this gene was evident exclusively in the enamel knot at the early cap stage. During the cap and bell stages, the enamel knot, inner dental epithelium, and differentiating stratum intermedium expressed the β–catenin gene more strongly than other parts of the enamel organ. During these stages, the strength of the gene expression changed heterogeneously within the inner dental epithelium and stratum intermedium. However, the heterogeneity was not evident at the late bell stage, when the cells in the inner dental epithelium had differentiated into ameloblasts at the cusp tip. No spatiotemporal change in β–catenin gene expression was apparent in the dental papilla except for the cells that differentiated into odontoblasts, which became negative for the expression of the gene after their differentiation. Thus, the up-regulated expression of the β–catenin gene was strongly associated with epithelial morphogenesis. These findings raise the possibility that the up–regulation of the gene expression and the stabilization of the protein by Wnt signaling play a role in the regulation of the activities of β–catenin in tooth morphogenesis.  相似文献   

7.
8.
Using tartrate-resistant acid phosphatase (TRAP), we examined the cytodifferentiation of odontoclast cells in resorbing areas of dental tissues during the replacement of teeth in a polyphyodont lizard, Liolaemus gravenhorsti. We also report, by means of Lectin-HRP histochemistry, the distribution pattern of some specific sugar residues of TRAPase-positive cells. For detection of TRAPase activity, the azo dye-coupling technique was used. Lectin binding sites were demonstrated by means of specific HRP-lectins. The process of tooth resorption was divided into four stages: 1) preresorption-the wall of the dental pulp is covered with an odontoblast layer, and no TRAP-positive cells are in the dental pulp; 2) early resorption-TRAP-positive multinucleate odontoclasts are present on the dental wall, but the rest of the pulp surface is still covered with an odontoblast layer; 3) later resorption-the entire surface of the pulp chamber is lined with multinucleate odontoclasts; and 4) final resorption-the tooth has been totally resorbed. Odontoclasts are usually detached from the resorbed surface, and show signs of degeneration. Of the six lectins used, PNA, ECA, and UEA-1 bind to multinucleated but not mononuclear cells. All the remaining lectins, BS-1, RCA(120), and LTA showed no binding to any cells of the teeth. The significance of saccharidic moieties such as acetyl-galactosamine, acetyl-glucosamine, and fucose sugar residues is difficult to ascertain. Perhaps these oligosaccharides might be borne on molecules associated with odontoclastic resorption or associated with multinucleation of odontoclasts after attachment to the dentine surface.  相似文献   

9.
M Nakai  Y Tatemoto  H Mori  M Mori 《Histochemistry》1985,83(5):455-463
The lectin-binding patterns of the cells involved in amelogenesis and dentinogenesis in developing teeth of rats were studied. Undifferentiated odontogenic epithelia exhibited very slight staining with almost all of the lectins examined. The lectin-staining affinities of secretory ameloblasts could be divided into two categories: Concanavalin-A (Con-A), Wheat germ agglutinin (WGA) and Soybean agglutinin (SBA) binding occurred from the middle to apical cytoplasm, whereas Ricinus communis agglutinin-I (RCA-I) and Ulex europeus I (UEA-I) binding predominated in the basal regions. The cells of the stratum intermedium exhibited relatively strange lectin staining, which appeared to be dependent on ameloblastic maturation. The basement membranes in undifferentiated epithelia were markedly positive for lectin binding. Odontoblasts showed moderate Con-A staining on the apical side of the cells, as well as slight-to-moderate reactions with WGA and SBA. Pulp cells and dental papillae showed slight-to-moderate lectin staining, and predentin and dentin were also moderately positive for Con-A and RCA-I binding and slightly so for WGA and SBA. The lectin-binding affinities were enhanced during the formation of enamel and dentin, and appeared to be dependent on the degree of cellular differentiation in ameloblasts and odontoblasts.  相似文献   

10.
Maspin is a 42 kDa serine protease inhibitor that possesses tumor suppressive and anti-angiogenic activities. Despite of a huge amount of data concerning the expression pattern of maspin in various tissues and its relevance to the biological properties of a variety of human cancer cells, little is known on the maspin expression in skeletal and tooth tissues. Recently, we reported that maspin may play an important role in extracellular matrix formation in bone by enhancing the accumulation of latent TGF-β in the extracellular matrix. This study was performed to elucidate the possible role of maspin in tooth development. First, an immunohistochemical analysis for human tooth germs at the late bell stage showed the expression of maspin by active ameloblasts and odontoblasts that were forming enamel and dentin, respectively. During rat tooth development, maspin expression was observed for the first time in inner and outer enamel epithelial cells and dental papilla cells at early bell stage. The neutralizing anti-maspin antibody inhibited the proper dental tissue formation in organ cultures of mandibular first molars obtained from 21-day-old rat embryos. In addition, the proliferation of HAT-7 cells, a rat odontogenic epithelial cell line, and human dental papilla cells were suppressed in a dose-dependent manner with anti-maspin antibody. Moreover, RT-PCR analysis showed that the expression of mRNA for tooth-related genes including dentin matrix protein 1, dentin sialophosphoprotein and osteopontin in human dental papilla cells was inhibited when treated with anti-maspin antibody. These findings suggest that maspin expressed in ameloblasts and odontoblasts plays an important physiological role in tooth development through the regulation of matrix formation in dental tissues.  相似文献   

11.
The detailed in situ expression pattern of the Set-α gene has been studied. Previously we showed that Set-α is a differentially expressed gene in the embryonic mouse mandible at day 10.5 (E10.5) gestational age. Cells expressing Set-α were widely distributed in both the epithelial and underlying ectomesenchymal cells at E10.5. At E12, they were slightly aggregated in an area where tooth germ of the lower first molar is estimated to be formed. At E13.5, Set-α was strongly expressed in the tooth germ. At the cap stage, Set-α was expressed in the enamel organ and dental papilla. At the bell stage, Set-α was distinctly expressed in the inner enamel epithelial and dental papilla cells facing the inner enamel epithelial layer, which were intended to differentiate into ameloblasts and odontoblasts, respectively. Interestingly, Set-α was also expressed in several embryonic craniofacial tissues derived from the ectoderm. This study is the first report that Set-α is distinctly expressed in the developing tooth germ, and suggests that Set-α plays an important role in both the initiation and the growth of the tooth germ, as well as in the differentiation of ameloblasts and odontoblasts.  相似文献   

12.
Leptin, a 16 kDa non-glycolated polypeptide of 146 amino acids produced by the ob gene, has a variety of physiological roles not only in lipid metabolism, hematopoiesis, thermogenesis and ovarian function, but also in angiogenesis. This study focuses to investigate the possibility that leptin, as an angiogenic factor, may regulate the angiogenesis during tooth development. We firstly studied the expression of leptin and vascular endothelial growth factor (VEGF) during tooth development immunohistochemically. This investigation revealed that leptin is expressed in ameloblasts, odontoblasts, dental papilla cells and stratum intermedium cells. This expression pattern was similar to that of VEGF, one of the most potent angiogenic factors. Interestingly, more leptin-positive cells were observed in the upper third portion of dental papilla, which is closest to odontoblastic layer, compared to middle and lower thirds. Moreover, in the dental papilla, more CD31 and/or CD34-positive vascular endothelial cells were observed in the vicinity of ameloblasts and odontoblasts expressing leptin and VEGF. These findings strongly suggest that ameloblasts, odontoblasts and dental papilla cells induce the angiogenesis in tooth germs by secretion of leptin as well as VEGF.  相似文献   

13.
Tight junctions might play a role during tissue morphogenesis and cell differentiation. In order to address these questions, we have studied the distribution pattern of the tight junction-associated proteins ZO-1, ZO-2, ZO-3 and occludin in the developing mouse tooth as a model. A specific temporal and spatial distribution of tight junction-associated proteins during tooth development was observed. ZO-1 appeared discontinuously in the cell membrane of enamel organ and dental mesenchyme cells. However, endothelial cells of the dental mesenchyme capillaries displayed a continuous fluorescence at the cell membrane. Inner dental epithelium first showed an evident signal for ZO-1 at the basal pole of the cells at bud/cap stage, but ZO-1 was accumulated at the basal and apical pole of preameloblast/ameloblasts at late bell stage. Surprisingly, in the incisor ZO-1 decreased as the inner dental epithelium differentiated, and was re-expressed in secretory and mature ameloblasts. On the contrary, ZO-2 was confined to continuous cell-cell contacts of the enamel organ in both molars and incisors. The lateral cell membrane of inner dental epithelial cells was specifically ZO-2 labeled. However, ZO-3 was expressed in oral epithelium whereas dental embryo tissues were negative. In addition, occludin was hardly detected in dental tissues at the early stage of tooth development, but was distributed continuously at the cell membrane of endothelial cells of ED19.5 dental mesenchyme. In incisors, occludin was detected at the cell membrane of the secretory pole of ameloblasts. The occurrence and relation during tooth development of tight junction proteins ZO-1, ZO-2 and occludin, but not ZO-3, suggests a combinatory assembly in tooth morphogenesis and cell differentiation.  相似文献   

14.
This study examined the detailed gene expression pattern of three different heat shock proteins (HSPs), Hsc73, Hsj2, and Hsp86, by means of an in situ hybridization method. Hsc73, Hsj2, and Hsp86 were shown in our previous study to be differentially expressed in the mouse embryonic mandible at day 10.5 (E10.5) gestational age. These HSP genes showed similar expression patterns during development of the mouse lower first molar. HSPs-expressing cells were widely distributed in both the epithelial and underlying ectomesenchymal cells at E10.5, and then were slightly localized at E12 in an area where the tooth germ of the lower first molar is estimated to be formed. A strong expression of HSPs was observed in the tooth germ at E13.5. At the cap stage, HSPs were expressed in the enamel organ and dental papilla. At the bell stage, HSPs were distinctly expressed in the inner enamel epithelium and dental papilla cells facing the inner enamel epithelial layer, which later differentiate into ameloblasts and odontoblasts, respectively. This study is the first report in which Hsc73, Hsj2, and Hsp86 were distinctly expressed in the developing tooth germ, thus suggesting these HSPs are related to the development and differentiation of odontogenic cells.  相似文献   

15.
Tooth enamel is formed by epithelially-derived cells called ameloblasts, while the pulp dentin complex is formed by the dental mesenchyme. These tissues differentiate with reciprocal signaling interactions to form a mature tooth. In this study we have characterized ameloblast differentiation in human developing incisors, and have further investigated the role of extracellular matrix proteins on ameloblast differentiation. Histological and immunohistochemical analyses showed that in the human tooth, the basement membrane separating the early developing dental epithelium and mesenchyme was lost shortly before dentin deposition was initiated, prior to enamel matrix secretion. Presecretary ameloblasts elongated as they came into contact with the dentin matrix, and then shortened to become secretory ameloblasts. In situ hybridization showed that the presecretory stage of odontoblasts started to express type I collagen mRNA, and also briefly expressed amelogenin mRNA. This was followed by upregulation of amelogenin mRNA expression in secretory ameloblasts. In vitro, amelogenin expression was upregulated in ameloblast lineage cells cultured in Matrigel, and was further up-regulated when these cells/Matrigel were co-cultured with dental pulp cells. Co-culture also up-regulated type I collagen expression by the dental pulp cells. Type I collagen coated culture dishes promoted a more elongated ameloblast lineage cell morphology and enhanced cell adhesion via integrin α2β1. Taken together, these results suggest that the basement membrane proteins and signals from underlying mesenchymal cells coordinate to initiate differentiation of preameloblasts and regulate type I collagen expression by odontoblasts. Type I collagen in the dentin matrix then anchors the presecretary ameloblasts as they further differentiate to secretory cells. These studies show the critical roles of the extracellular matrix proteins in ameloblast differentiation.  相似文献   

16.
Abstract. Nerve growth factor (NGF), a target-derived neurotrophic substance, may have broader biological functions in various types of nons-neuronal differentiating cells. The effects of NGF are dependent on initial binding of NGF to specific cell-surface receptors (p75NGFR and p140prototrk) on responsive cells. The continously growing rat incisor offers an excellent model demonstrating defined territories of differentiation of specific cell populations. We used immunohistochemistry to determine sites of NGF. proNGF and p75NGFR accumulation in the rat incisor, whereas NGF mRNA expression was visualized by in situ hybridization in the developing rat molar and incisor. Strictly similar patterns of NGF mRNA, proNGF and NGF expression were observed in differentiating cells responsible for the production of the main structural matrices of the tooth. Thus, proNGF-like and NGF-like immunoreactivity, as well as the NGF mRNA signal were observed in preameloblasts and young ameloblasts of the dental epithelium and in polarizing odontoblasts of the dental mesenchyme. In contrast, the distribution of p75NGFR was correlated with differentiation events only in dental mesenchyme: polarizing odontoblasts expressed p75NGFR whereas the molecule was absent in functional odontoblasts. In dental epithelium, the restricted expression of p75NGFR in ameloblast precursor cells was correlated with proliferative phenomena. The patterns of proNGF, NGF and p75NGFR expression in epithelium and mesenchyme implicate both an autocrine and paracrine mode of action of the NGF molecule in dental tissues. The findings reported here are important for understanding NGF action in specific dental cell populations and suggest that this molecule is involved in the cascade of events that directs tooth development.  相似文献   

17.
18.
Undifferentiated odontogenic epithelium and dental papilla cells differentiate into ameloblasts and odontoblasts, respectively, both of which are essential for tooth development. These differentiation processes involve dramatic functional and morphological changes of the cells. For these changes to occur, activation of mitochondrial functions, including ATP production, is extremely important. In addition, these changes are closely related to mitochondrial fission and fusion, known as mitochondrial dynamics. However, few studies have focused on the role of mitochondrial dynamics in tooth development. The purpose of this study was to clarify this role. We used mouse tooth germ organ cultures and a mouse dental papilla cell line with the ability to differentiate into odontoblasts, in combination with knockdown of the mitochondrial fission factor, dynamin related protein (DRP)1. In organ cultures of the mouse first molar, tooth germ developed to the early bell stage. The amount of dentin formed under DRP1 inhibition was significantly larger than that of the control. In experiments using a mouse dental papilla cell line, differentiation into odontoblasts was enhanced by inhibiting DRP1. This was associated with increased mitochondrial elongation and ATP production compared to the control. These results suggest that DRP1 inhibition accelerates dentin formation through mitochondrial elongation and activation. This raises the possibility that DRP1 might be a therapeutic target for developmental disorders of teeth.  相似文献   

19.
Morphological and functional changes during ameloblast and odontoblast differentiation suggest that enamel and dentin formation is under circadian control. Circadian rhythms are endogenous self-sustained oscillations with periods of 24h that control diverse physiological and metabolic processes. Mammalian clock genes play a key role in synchronizing circadian functions in many organs. However, close to nothing is known on clock genes expression during tooth development. In this work, we investigated the expression of four clock genes during tooth development. Our results showed that circadian clock genes Bmal1, clock, per1, and per2 mRNAs were detected in teeth by RT-PCR. Immunohistochemistry showed that clock protein expression was first detected in teeth at the bell stage (E17), being expressed in EOE and dental papilla cells. At post-natal day four (PN4), all four clock proteins continued to be expressed in teeth but with different intensities, being strongly expressed within the nucleus of ameloblasts and odontoblasts and down-regulated in dental pulp cells. Interestingly, at PN21 incisor, expression of clock proteins was down-regulated in odontoblasts of the crown-analogue side but expression was persisting in root-analogue side odontoblasts. In contrast, both crown and root odontoblasts were strongly stained for all four clock proteins in first molars at PN21. Within the periodontal ligament (PDL) space, epithelial rests of Malassez (ERM) showed the strongest expression among other PDL cells. Our data suggests that clock genes might be involved in the regulation of ameloblast and odontoblast functions, such as enamel and dentin protein secretion and matrix mineralization.  相似文献   

20.
Summary We have examined radioautographically the protein synthetic and secretory activity of differentiating odontoblasts and ameloblasts, exposed for 9 h in vitro to various concentrations of colchicine in the presence of 3H-proline. Colchicine impairs the cytodifferentiation of the dental epithelium into ameloblasts and of the dental mesenchyme into odontoblasts; the effects depend on the dose. However, denial epithelial cells are more sensitive to the drug than dental mesenchymal cells. In stages prior to odontoblast differentiation, colchicine enhances the number of radioautographic grains over the dental epithelium without changing the grain counts over the dental basement membrane area: This suggests that in vitro the dental epithelium synthesizes and secretes proline-containing components that are not constituents of the dental basement membrane. Also, during the subsequent stages of ameloblast differentiation colchicine increases the number of radioautographic grains over the preameloblasts. The present data suggest that the primary in vitro target of colchicine is not the dental mesenchyme, but the dental epithelium. The data also indicate that differentiating ameloblasts synthesize and secrete significant amounts of proteins in vitro prior to the first deposition of enamel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号