首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexation of the trypanocidal drug, ethidium bromide (EB), and the self-complementary deoxytetraribonucleoside triphosphates, 5′-d(ApCpGpT), 5′-d(ApGpCpT), and 5′-d(TpGpCpA), in aqueous salt solution has been investigated using one-dimensional and two-dimensional 500/600 MHz 1H-nmr spectroscopy. Six hundred megahertz two-dimensional homonuclear 1H-nmr spectroscopy (nuclear Overhauser effect spectroscopy) was used for a qualitative determination of the structures of EB binding with the deoxytetranucleotides. Concentration dependencies of proton chemical shifts of the molecules have been measured at constant temperatures (T = 303 or 308 K). Different successive schemes of complex formation between the dye molecule and the tetranucleotides have been examined by taking into account various molecular associations in solution, viz., 1:1, 1:2, 2:1 and 2:2 complexes. Equilibrium reaction constants and the limiting proton chemical shifts in the complexes have been determined. The relative contributions of different types of complexes in the equilibrium mixture have been determined and special features of the dynamic equilibrium have been revealed by analysis of chemical shifts as a function of both the dye and tetranucleotide concentrations. The present analysis leads to the conclusion that EB binds preferentially to the pyrimidine-purine sites of the tetranucleotide duplexes. The results show that the energy of EB binding depends on the base content in the pyrimidine-purine sites of the tetramers and on the nucleotide residuals flanking the preferential site. The most favorable structures of the 1:2 and 2:2 complexes of the dye with the tetranucleotides have been constructed using calculated values of induced chemical shifts of EB protons in conjunction with intermolecular nuclear Overhauser effects. The structures of the EB:tetranucleotide complexes depend on tetramer base sequence and are characterized by differences in helix parameters. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Chemoselective reduction of one isomer of the 1-menthylester of 1,3-oxathiolan-5-one-2-carboxylic acid produces a mixture of four lactol diastereomers from which the title compound was isolated after acylation. The isomeric purity and absolute stereochemistry were determined by spectroscopic methods, chiral HPLC techniques, and conversion to (?)-2′-deoxy-3′-thiacytidine (Lamivudine, 3TCTM). © 1994 Wiley-Liss, Inc.  相似文献   

3.
4.
Diadenosine 5′,5′”-P1,P4-tetraphosphate (Ap4A) cleaving enzymes are assumed to regulate intracellular levels of Ap4A, a compound known to affect cell proliferation and stress responses. From plants an Ap4A hydrolase was recently purified using tomato cells grown in suspension. It was partially sequenced and a peptide antibody was prepared (Feussner et al., 1996). Using this polyclonal monospecific antibody, an abundant nuclear location of Ap4A hydrolase in 4-day-old cells of atomato cell suspension culture is demonstrated here by means of immunocytochemical techniques using FITC (fluorescein-5-isothiocyanate) labeled secondary antibodies. The microscopic analysis of the occurrence of Ap4A hydrolase performed for different stages of the cell cycle visualized by parallel DAPI (4,6-diamidino-2-phenylindole) staining revealed that the protein accumulates within nuclei of cells in the interphase, but is absent in the nucleus as well as cytoplasm during all stages of mitosis. This first intracellular localization of an Ap4A degrading enzyme within the nucleus and its pattern of appearance during the cell cycle is discussed in relation to the suggested role of Ap4A in triggering DNA synthesis and cell proliferation.  相似文献   

5.
6.
7.
The present work describes three novel nonpolar host peptide sequences that provide a ready assessment of the 310- and α-helix compatibilities of natural and unnatural amino acids at different positions of small- to medium-size peptides. The unpolar peptides containing Ala, Aib, and a C-terminal p-iodoanilide group were designed in such a way that the peptides could be rapidly assembled in a modular fashion, were highly soluble in solvent mixtures of triflouroethanol and H2O for CD- and two-dimensional (2D) nmr spectroscopic analyses, and showed excellent crystallinity suited for x-ray structure analysis. To validate our approach we synthesized 9-mer peptides 79a–96 (Table IV), 12-mer peptides 99–110c (Table V), and 10-mer peptides 120a–125d and 129–133 (Table VI and Scheme 8) incorporating a series of optically pure cyclic and open-chain (R)- and (S)-α,α-disubstituted glycines 1–10 (Figure 2). These amino acids are known to significantly modulate the conformations of small peptides. Based on x-ray structures of 9-mers 79a, 80, and 87 (Figures 4–7), 10-mers 124c, 131, and 132 (Figures 9–12), and 12-mer peptide 102b (Figure 13), CD spectra of all peptides recorded in acidic, neutral, and basic media and detailed 2D-nmr analyses of 9-mer peptide 86 and 12-mer 102b, several interesting conformational observations were made. Especially interesting results were obtained using the convex constraint CD analysis proposed by Fasman on 9-mer peptides 79a–d, 80, 81, 86, and 87, which allowed us to determine the relative content of 310- and α-helical conformations. These results were fully supported by the corresponding x-ray and 2D-nmr analyses. As a striking example we found that the (S)- and (R)-β-tetralin derived amino acids (R)- and (S)-1 show excellent α-helix stabilisation, more pronounced than Aib and Ala. These novel reference peptide sequences should help establish a scale for natural and unnatural amino acids concerning their intrinsic 310- and α-helix compatibilities at different positions of medium-sized peptides and thus improve our understanding in the folding processes of peptides. © 1997 John Wiley & Sons, Inc. Biopoly 42: 575–626, 1997  相似文献   

8.
It was shown that racemic (±)‐ 2 [1′‐benzyl‐3‐(3‐fluoropropyl)‐3H‐spiro[[2]benzofuran‐1,4′‐piperidine], WMS‐1813 ] represents a promising positron emission tomography (PET) tracer for the investigation of centrally located σ1 receptors. To study the pharmacological activity of the enantiomers of 2 , a preparative HPLC separation of (R)‐2 and (S)‐2 was performed. The absolute configuration of the enantiomers was determined by CD‐spectroscopy together with theoretical calculations of the CD‐spectrum of a model compound. In receptor binding studies with the radioligand [3H]‐(+)‐pentazocine, (S)‐2 was thrice more potent than its (R)‐configured enantiomer (R)‐2 . The metabolic degradation of the more potent (S)‐enantiomer was considerably slower than the metabolism of (R)‐2 . The structures of the main metabolites of both enantiomers were elucidated by determination of the exact mass using an Orbitrap‐LC‐MS system. These experiments showed a stereoselective biotransformation of the enantiomers of 2 . Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
10.
As a key regulator for hormone activity, human aldo‐keto reductase family 1 member C3 (AKR1C3) plays crucial roles in the occurrence of various hormone‐dependent or independent malignancies. It is a promising target for treating castration‐resistant prostate cancer (CRPC). However, the development of AKR1C3 specific inhibitors remains challenging due to the high sequence similarity to its isoform AKR1C2. Here, we performed a combined in silico study to illuminate the inhibitory preference of 3‐(3,4‐dihydroisoquinolin‐2(1H)‐ylsulfonyl)benzoic acids for AKR1C3 over AKR1C2, of which compound 38 can achieve up to 5000‐fold anti‐AKR1C3 selectivity. Our umbrella sampling (US) simulations together with end‐point binding free energy calculation MM/GBSA uncover that the high inhibition selectivity originates from the different binding modes, namely “Inward” and “Outward,” of this compound series in AKR1C3 and AKR1C2, respectively. In AKR1C3/38, the tetrahydroquinoline moiety of 38 is accommodated inside the SP1 pocket and interacts favorably with surrounding residues, while, in AKR1C2/38, the SP1 pocket is too small to hold the bulky tetrahydroquinoline group that instead moves out of the pocket with 38 transitioning from an “Inward” to an “Outward” state. Further 3D‐QSAR and energy decomposition analyses suggest that SP1 in AKR1C3 prefers to bind with a rigid bicyclic moiety and the modification of the R3 group has important implication for the compound''s activity. This work is the first attempt to elucidate the selectivity mechanism of inhibitors toward AKR1C3 at the atomic level, which is anticipated to propel the development of next‐generation AKR1C3 inhibitors with enhanced efficacy and reduced “off‐target” effect for CRPC therapy.  相似文献   

11.
12.
Facile syntheses of 3-O-carbamoyl, -sulfamoyl, or -pivaloyl derivatives of 13α-oestrone and its 17-deoxy counterpart have been carried out. Microwave-induced, Ni-catalysed Suzuki–Miyaura couplings of the newly synthesised phenol esters with phenylboronic acid afforded 3-deoxy-3-phenyl-13α-oestrone derivatives. The carbamate and pivalate esters proved to be suitable for regioselective arylations. 2-(4-Substituted) phenyl derivatives were synthesised via Pd-catalysed, microwave-assisted C–H activation reactions. An efficient, one-pot, tandem methodology was elaborated for the introduction of the carbamoyl or pivaloyl group followed by regioselective C-2-arylation and subsequent removal of the directing group. The antiproliferative properties of the novel 13α-oestrone derivatives were evaluated in vitro on five human adherent cancer cell lines of gynaecological origin. 3-Sulfamate derivatives displayed substantial cell growth inhibitory potential against certain cell lines. The newly identified antiproliferative compounds having hormonally inactive core might be promising candidates for the design of more active anticancer agents.  相似文献   

13.
Neurotensin(8–13) (NTS(8–13)) analogs with C‐ and/or N‐terminal β‐amino acid residues and three DOTA derivatives thereof have been synthesized (i.e., 1 – 6 ). A virtual docking experiment showed almost perfect fit of one of the 1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid (DOTA) derivatives, 6a , into a crystallographically identified receptor NTSR1 (Fig. 1). The affinities for the receptors of the NTS analogs and derivatives are low, when determined with cell‐membrane homogenates, while, with NTSR1‐exhibiting cancer tissues, affinities in the single‐digit nanomolar range can be observed (Table 2). Most of the β‐amino acid‐containing NTS(8–13) analogs (Table 1 and Fig. 2), including the 68Ga complexes of the DOTA‐substituted ones ( 6 ; Figs. 2 and 5), are stable for ca. 1 h in human serum and plasma, and in murine plasma. The biodistributions of two 68Ga complexes (of 6a and 6b ) in HT29 tumor‐bearing nude mice, in the absence and in the presence of a blocking compound, after 10, 30, and 60 min (Figs. 3 and 4) lead to the conclusion that the amount of specifically bound radioligand is rather low. This was confirmed by PET‐imaging experiments with the tumor‐bearing mice (Fig. 6). Comparison of the in vitro plasma stability (after 1 h) with the ex vivo blood content (after 10–15 min) of the two 68Ga complexes shows that they are rapidly cleaved in the animals (Fig. 5).  相似文献   

14.
15.
In this study, we sequenced both two mitochondrial genes (COI and 16S rRNA) and nuclear genes (28S rRNA and elongation factor‐1α) from 71 species of Odonata that represent 7 superfamilies in 3 suborders. Phylogenetic testing for each two concatenated gene sequences based on function (ribosomal vs protein‐coding genes) and origin (mitochondrial vs nuclear genes) proved limited resolution. Thus, four concatenated sequences were utilized to test the previous phylogenetic hypotheses of higher taxa of Odonata via Bayesian inference (BI) and maximum likelihood (ML) algorithms, along with the data partition by the BI method. As a result, three slightly different topologies were obtained, but the BI tree without partition was slightly better supported by the topological test. This topology supported the suborders Anisoptera and Zygoptera each being a monophyly, and the close relationship of Anisozygoptera to Anisoptera. All the families represented by multiple taxa in both Anisoptera and Zygoptera were consistently revealed to each be a monophyly with the highest nodal support. Unlike consistent and robust familial relationships in Zygoptera those of Anisoptera were partially unresolved, presenting the following relationships: ((((Libellulidae + Corduliidae) + Macromiidae) + Gomphidae + Aeshnidae) + Anisozygoptera) + (((Coenagrionidae + Platycnemdidae) + Calopterygidae) + Lestidae). The subfamily Sympetrinae, represented by three genera in the anisopteran family Libellulidae, was not monophyletic, dividing Crocothemis and Deielia in one group together with other subfamilies and Sympetrum in another independent group.  相似文献   

16.
Vitamin E (RRR-α-tocopherol) is a lipid-soluble antioxidant that is present in the membranes of intracellular organelles. There it plays an important role in the suppression of free radical-induced lipid peroxidation. There are eight naturally occurring homologues of vitamin E that differ in their structure and in biological activity in vivo and in vitro. Although γ-tocopherol is a more effective free radical scavenger than α-tocopherol in vitro, the reverse is true in vivo, suggesting that the tocopherol distribution systems favor the localization of α-tocopherol at the sites where it is required. Vitamin E is transported in plasma primarily by lipoproteins, but little is known of how it is transported intracellularly. A 30 kDa α-tocopherol-binding protein in the liver cytoplasm may regulate plasma vitamin E concentrations by preferentially incorporating the vitamin E homologue, RRR-α-tocopherol (α-tocopherol), into nascent very low density lipoproteins. However, this α-tocopherol-binding protein is unique to the hepatocyte, whereas α-tocopherol is present in the cells of all major tissues. Moreover α-tocopherol accumulates at those sites within the cell where oxygen radical production is greatest and thus where it is most required; in the membranes of heavy mitochondria, light mitochondria, and endoplasmic reticulum. This raises the question of how the lipid-soluble α-tocopherol is transported intracellularly in different tissues. We have identified a new α-tocopherol-binding protein of molecular mass 14.2 kDa in the cytosol of heart and liver. This protein specifically binds α-tocopherol in preference to the δ- and γ-homologues but does not bind oleate. Studies on immunoreactivity and ligand specificity of the protein suggest that it is not a fatty acid-binding protein. The 14.2 kDa α-tocopherol-binding protein stimulates the transfer of α-tocopherol from liposomes to mitochondria in vitro by 8 to 10 fold. We suggest that this low molecular mass TBP may be responsible for the intracellular transport and distribution of α-tocopherol in the tissues.  相似文献   

17.
Both (R)- and (S)-4-hydroxypentylaminoacetamide have been synthesized by reductive amination of glycinamide on the γ-valerolactols corresponding to (R)- and (S)-γ-valerolactone, respectively. These enantiomeric lactones were readily obtained in high enantiomeric excess (ee) by enzymic porcine pancreatic lipase (PPL) kinetic resolution of rac-methyl γ-hydroxyvalerate. © 1992 Wiley-Liss, Inc.  相似文献   

18.
Consecutive exons 6A, 6B, 7 and 8 that encode the variable region of the amino-terminal domain (NTD) of the col11a1 gene product undergo a complex pattern of alternative splicing that is both tissue-dependent and developmentally regulated. Expression of col11a1 is predominantly associated with cartilage where it plays a critical role in skeletal development. At least five splice-forms (6B-7-8, 6A-7-8, 7-8, 6B-7 and 7) are found in cartilage. Splice-forms containing exon 6B or 8 have distinct distributions in the long bone during development, while in non-cartilage tissues, splice-form 6A-7-8 is typically expressed. In order to study this complex and tissue-specific alternative splicing, a mini-gene that contains mouse genomic sequence from exon 5 to 11, flanking the variable region of α1(XI)-NTD, was constructed. The minigene was transfected into chondrocytic (RCS) and non-chondrocytic (A204) cell lines that endogenously express α1(XI), as well as 293 cells which do not express α1(XI). Alternative splicing in RCS and A204 cells reflected the appropriate cartilage and non-cartilage patterns while 293 cells produced only 6A-7-8. This suggests that 6A-7-8 is the default splicing pathway and that cell or tissue-specific trans-acting factors are required to obtain pattern of the alternative splicing of α1(XI) pre-mRNA observed in chondrocytes. Deletional analysis was used to identify cis-acting regions important for regulating splicing. The presence of the intact exon 7 was required to generate the full complex chondrocytic pattern of splicing. Furthermore, deletional mapping of exon 6B identified sequences required for expression of exon 6B in RCS cells and these may correspond to purine-rich (ESE) and AC-rich (ACE) exonic splicing enhancers.  相似文献   

19.
Wu S  Ding S  Zhou R  Li Z 《Journal of biotechnology》2007,130(4):364-369
Recombinant Volvariella volvacea endoglucanase 1 (EG1) and its catalytic module (EG1-CM) were obtained by expression in Pichia pastoris, purified by two-step chromatography, and the catalytic activities and binding capacities were compared. EG1 and EG1-CM exhibited very similar specific activities towards the soluble substrates carboxymethyl cellulose, lichenan and mannan, and insoluble H3PO4 acid-swollen cellulose, whereas the specific activities of EG1-CM towards the insoluble substrates -cellulose, Avicel and filter paper were approximately 58, 43 and 38%, respectively compared to EG1. No increase in reducing sugar release was detected in the reaction mixture supernatants after 50 h exposure of filter paper, Avicel or -cellulose to EG1-CM, whereas increases in the total reducing sugar equivalents (i.e. reducing sugar released into solution together with new reducing ends generated in the cellulosic substrates) in reaction mixtures were observed after 1 h. In reaction mixtures containing EG1, soluble reducing sugar equivalents were detected in supernatants after 3 h incubation with the insoluble cellulosic substrates. EG1-CM did not adsorb to Avicel, and the binding capacities of EG1-CM towards filter paper and H3PO4 acid-swollen cellulose were 27.9–33.3% and 29.6–60.6%, respectively of values obtained with EG1 within the range of total added protein. In enzymatic deinking experiments, the ink removal rate in EG1-CM-treated samples was only slightly higher (8%), than that of untreated controls, whereas that of the EG1-treated samples was 100% higher. Bio-stoning of denim with EG1-CM resulted in increases of 48% and 40% in weight loss and indigo dye removal, respectively compared with untreated controls. These increases were considerably lower than the corresponding values of 219% and 133% obtained when samples were treated with EG1.  相似文献   

20.
Oligomers of 5-amino-8-vinyl-phthalazine-1,4(2H,3H)-dione exhibit about 0.05% of the chemiluminescence quantum yield of the corresponding ‘monomer unit’, i.e. 5-amino-8-ethyl-phthalazine-1,4(2H,3H)-dione which has a similar quantum yield to luminol. The quantum yields of copolymers of 5-amino-8-vinyl-phthalazine-1,4(2H,3H)-dione (1a) with methyl methacrylate or with styrene increase up to 1000-fold, relative to the quantum yield of oligomers of (1a). Thus the monomer units of methyl methacrylate or styrene appear to act as ‘spacers’ between the lumigenic groups. α,ω-Bis[(5-amino-phthalazine-1,4(2H,3H)-dion-)8-yl] alkanes show an analogue ‘distance’ effect: the chemiluminescence quantum yield increases with increasing alkane chain length. As the fluorescence of the corresponding amino phthalates (which are intermediates in the synthesis of the phthalazine diones) is only slightly influenced by the distance between the lumigenic groups it is suggested that a mainly chemical ‘distance effect’ is working here: the smaller the intramolecular distance between the hydrazide groups the more inhibition exists in respect of the oxidative reaction producing the luminol-type chemiluminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号