首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Intense underwater sounds caused by military sonar, seismic surveys, and pile driving can harm acoustically sensitive marine mammals. Many jurisdictions require such activities to undergo marine mammal impact assessments to guide mitigation. However, the ability to assess impacts in a rigorous, quantitative way is hindered by large knowledge gaps concerning hearing ability, sensitivity, and behavioral responses to noise exposure. We describe a simulation‐based framework, called SAFESIMM (Statistical Algorithms For Estimating the Sonar Influence on Marine Megafauna), that can be used to calculate the numbers of agents (animals) likely to be affected by intense underwater sounds. We illustrate the simulation framework using two species that are likely to be affected by marine renewable energy developments in UK waters: gray seal (Halichoerus grypus) and harbor porpoise (Phocoena phocoena). We investigate three sources of uncertainty: How sound energy is perceived by agents with differing hearing abilities; how agents move in response to noise (i.e., the strength and directionality of their evasive movements); and the way in which these responses may interact with longer term constraints on agent movement. The estimate of received sound exposure level (SEL) is influenced most strongly by the weighting function used to account for the specie's presumed hearing ability. Strongly directional movement away from the sound source can cause modest reductions (~5 dB) in SEL over the short term (periods of less than 10 days). Beyond 10 days, the way in which agents respond to noise exposure has little or no effect on SEL, unless their movements are constrained by natural boundaries. Most experimental studies of noise impacts have been short‐term. However, data are needed on long‐term effects because uncertainty about predicted SELs accumulates over time. Synthesis and applications. Simulation frameworks offer a powerful way to explore, understand, and estimate effects of cumulative sound exposure on marine mammals and to quantify associated levels of uncertainty. However, they can often require subjective decisions that have important consequences for management recommendations, and the basis for these decisions must be clearly described.  相似文献   

3.
LCA is a system-wide assessment, and the LCIA phase is confronted with the difficulties of local and regional effects in a number of impact categories. We integrate three different environmental techniques to demonstrate how these effects can be addressed in an environmental assessment. The techniques are life cycle inventory, environmental fate models, and an ecological impact assessment using fuzzy expert systems. Results of the LCI are mass and energy flows. In the environmental fate modelling step these mass flows are transformed into concentration and immission values by dispersion-reaction models. A generalised fuzzy expert system for the environmental mechanisms compares calculated exposure with site specific buffering capacities and formulates a generalised dose-response relationship. This generalised fuzzy expert system is used as a template for the assessment of local and regional environmental impacts. An application of this integrated approach is shown for a practical problem: production of magnesium car components. The environmental fate of nitrogen oxides which are released due to the major combustion source within that production system is simulated. Fuzzy expert models for crop damage, soil acidification and eutrophication determine the possible environmental impact of the immited nitrogen oxides. The important methodological extension of this integrated approach is a regionalised impact assessment depending on the spatial distribution of environmental characteristics.  相似文献   

4.
5.
Environmental problems, such as global warming, the limited supply of sustainable energy, the depletion of natural resources, hazardous emissions released into the atmosphere and waste, are increasing global concerns. Therefore, individuals, communities, and businesses need to address environmental protection and sustainability. Environmental impact assessments are needed to identify, mitigate, and control aspects that affect the environment or a company's products, services, or activities. In this study, a general environmental aspect and impact assessment approach, which can be applied to any company that is involved in the production or service sector, is created. An environmental impact pattern that consists of 10 main and 32 sub-categories was formed based on the ISO 14001, environmental studies and field applications. The developed approach was applied to the dyeing units of a manufacturing firm. Sixteen environmental aspects were identified and assessed using the environmental impact template via the environmental failure mode and effect analysis (E-FMEA) method. The developed-approach can be applied to each sector, which will enable us to perform a detailed analysis of the environmental aspects in the environmental impact category. This approach provides a checklist for the environmental impact studies of businesses and has been pioneered as an effective method for company resources to improve their environmental performance.  相似文献   

6.
The present article is a brief review of the legal characteristics of water quality objectives and legally permissible exemptions from these objectives, as enacted in the EC Water Framework Directive. Six different types of exemptions have been identified in total. These vary markedly in the legal premises of their feasibility, ranging from the set deadlines for the environmental objectives to application of less stringent environmental objectives for certain water bodies.  相似文献   

7.
微小RNA(microRNAs,miRNAs)是一类内源性的非编码单链RNA,能够通过与靶mRNA特异性的碱基配对而导致靶mRNA降解或抑制其翻译,从而对基因进行转录后调控。干细胞的自我更新和多向分化过程依赖于广泛而多样的调控机制,miRNAs正是这些调控机制中非常重要的一类分子。研究发现,干细胞的自我更新功能需要多种miRNAs的参与来维持;干细胞的分化也是多种miRNAs参与调控的结果。miRNAs可以作为干细胞研究的一个新的切入点。  相似文献   

8.
Aldehydes are ubiquitous pollutants generated during the combustion of organic materials and are present in air, water, and food. Several aldehydes are also endogenous products of lipid peroxidation and by-products of drug metabolism. Despite well-documented high reactivity of unsaturated aldehydes, little is known regarding their cardiovascular effects and their role in cardiac pathology. Accordingly, we examined the myocardial effects of the model unsaturated aldehyde acrolein. In closed-chest mice, intravenous acrolein (0.5 mg/kg) induced rapid but reversible left ventricular dilatation and dysfunction. In mouse myocytes, micromolar acrolein acutely depressed myofilament Ca(2+) responsiveness without altering catecholamine sensitivity, similar to the phenotype of stunned myocardium. Immunoblotting revealed increased acrolein-protein adducts and protein-carbonyls in both acrolein-exposed myocardium (1.8-fold increase, P < 0.002) and myocytes (6.4-fold increase, P < 0.02). Both the contractile dysfunction and adduct formation were markedly attenuated by pretreatment with the thiol donor N-acetylcysteine (5 mM). Two-dimensional gel electrophoresis and mass-assisted laser desorption/ionization time-of-flight mass spectrometry analysis revealed two groups of adducted proteins, sarcomeric/cytoskeletal proteins (cardiac alpha-actin, desmin, myosin light polypeptide 3) and energy metabolism proteins (mitochondrial creatine kinase-2, ATP synthase), indicating site-specific protein modification that was confirmed by immunohistochemical colocalization. We conclude that direct exposure to acrolein induces selective myofilament impairment, which may be, in part, related to the modification of proteins involved in myocardial contraction and energy metabolism. Myocardial dysfunction induced by acrolein and related aldehydes may be symptomatic of toxicological states associated with ambient or occupational exposures or drug toxicity. Moreover, aldehydes such as acrolein may mediate cardiac dysfunction in pathologies characterized by high-oxidative stress.  相似文献   

9.
Next-generation sequencing technologies for environmental DNA research   总被引:7,自引:0,他引:7  
Since 2005, advances in next-generation sequencing technologies have revolutionized biological science. The analysis of environmental DNA through the use of specific gene markers such as species-specific DNA barcodes has been a key application of next-generation sequencing technologies in ecological and environmental research. Access to parallel, massive amounts of sequencing data, as well as subsequent improvements in read length and throughput of different sequencing platforms, is leading to a better representation of sample diversity at a reasonable cost. New technologies are being developed rapidly and have the potential to dramatically accelerate ecological and environmental research. The fast pace of development and improvements in next-generation sequencing technologies can reflect on broader and more robust applications in environmental DNA research. Here, we review the advantages and limitations of current next-generation sequencing technologies in regard to their application for environmental DNA analysis.  相似文献   

10.
The environmental impact of research increasingly needs to be taken into account in design and execution. This makes good financial sense. However, it is especially in the research world as one of the key reasons for doing health research is to improve our knowledge to improve health. Specifically, doing research in a more sustainable way allows us to generate more knowledge with the same resource. Research not only needs to be done increasingly sustainably, but the content of the research needs to direct how we promote health and deliver healthcare in more sustainable ways.  相似文献   

11.
Phytoremediation--a novel and promising approach for environmental clean-up   总被引:13,自引:0,他引:13  
Phytoremediation is an eco friendly approach for remediation of contaminated soil and water using plants. Phytoremediation is comprised of two components, one by the root colonizing microbes and the other by plants themselves, which degrade the toxic compounds to further non-toxic metabolites. Various compounds, viz. organic compounds, xenobiotics, pesticides and heavy metals, are among the contaminants that can be effectively remediated by plants. Plant cell cultures, hairy roots and algae have been studied for their ability to degrade a number of contaminants. They exhibit various enzymatic activities for degradation of xenobiotics, viz. dehalogenation, denitrification leading to breakdown of complex compounds to simple and non-toxic products. Plants and algae also have the ability to hyper accumulate various heavy metals by the action of phytochelatins and metallothioneins forming complexes with heavy metals and translocate them into vacuoles. Molecular cloning and expression of heavy metal accumulator genes and xenobiotic degrading enzyme coding genes resulted in enhanced remediation rates, which will be helpful in making the process for large-scale application to remediate vast areas of contaminated soils. A few companies worldwide are also working on this aspect of bioremediation, mainly by transgenic plants to replace expensive physical or chemical remediation techniques. Selection and testing multiple hyperaccumulator plants, protein engineering ofphytochelatin and membrane transporter genes and their expression would enhance the rate of phytoremediation, making this process a successful one for bioremediation of environmental contamination. Recent years have seen major investments in the R&D, which have also resulted in competition of filing patents by several companies for economic gains. The details of science & technology related to phytoremediation have been discussed with a focus on future trends and prospects of global relevance.  相似文献   

12.
Abstract

The main aim of this study is to develop and implement new integrated environmental risk assessment for transportation activities. With this purpose, environmental risks occur from transportation activities from different transportation modes which are air, road, sea and rail are determined. Transportation modes are compared with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) approach in order to obtain importance weights and impact categories of air, soil and water are used as criteria where the weights are determined with Analytical Hierarchy Process (AHP). For the risk assessment process, Failure Mode and Effect Analysis (FMEA) has been used and prioritizations of risks are calculated with weights of the calculated transportation modes. In the study, integrated multi-criteria decision-making methods with the classic FMEA method with different categories of impacts reveal new multidimensional perspective to classic environmental risk assessment methods.  相似文献   

13.
Siderophores in environmental research: roles and applications   总被引:1,自引:0,他引:1  
Siderophores are organic compounds with low molecular masses that are produced by microorganisms and plants growing under low iron conditions. The primary function of these compounds is to chelate the ferric iron [Fe(III)] from different terrestrial and aquatic habitats and thereby make it available for microbial and plant cells. Siderophores have received much attention in recent years because of their potential roles and applications in various areas of environmental research. Their significance in these applications is because siderophores have the ability to bind a variety of metals in addition to iron, and they have a wide range of chemical structures and specific properties. For instance, siderophores function as biocontrols, biosensors, and bioremediation and chelation agents, in addition to their important role in weathering soil minerals and enhancing plant growth. The aim of this literature review is to outline and discuss the important roles and functions of siderophores in different environmental habitats and emphasize the significant roles that these small organic molecules could play in applied environmental processes.  相似文献   

14.
Hypersaline environments, such as crystallizer ponds of solar salterns, show one of the highest concentration of viruses reported for aquatic systems. All the halophages characterized so far are isolates obtained by cultivation from described haloarchaeal species that have only low abundance in the environment. We employed a culture-independent metagenomic approach to analyse for the first time complete genomes in the halophage community and explored the in situ diversity by transmission electron microscopy and pulsed-field gel electrophoresis. We report the genomic sequence of a not yet isolated halophage (named as environmental halophage 1 'EHP-1') whose DNA was obtained from crystallizer samples with a salinity of 31%. The sequenced genome has a size of 35 kb and a G + C content around 51%. The G + C content is lower than that of previously characterized halophages. However, G + C content and codon usage in EHP-1 are similar to the recently cultivated and sequenced Haloquadratum walsbyi, the major prokaryotic component in solar salterns around the world. Forty open reading frames have been predicted, including genes that putatively code for proteins involved in DNA replication (ribonucleotide reductases, thymidylate kinase) normally found in lytic viruses.  相似文献   

15.
The field of environmental science is currently undergoing a shift from environmental measurement to environmental forensics. This is largely attributed to the Environmental Liability Directive 2004/35/EC, which lays down the framework for the application of the ‘polluter pays principle’. The adoption of environmental forensics approaches for nitrate source determination is one of the areas receiving the greatest interest. Current methods used for nitrate source differentiation do not successfully distinguish between sewage and manure sources. Nevertheless, achieving this specific differentiation is of great importance due to different health risks arising from the two sources. This science career contribution discusses emerging efforts in using chemical markers for differentiating and characterising point and diffuse inputs of sewage and manure into surface waters.  相似文献   

16.
Intensive livestock production systems produce significant quantities of excreted material that must be managed to protect water, air, and crop quality. Many jurisdictions mandate how livestock wastes are managed to protect adjacent water quality from microbial and chemical contaminants that pose an environmental and human health challenge. Here, we consider innovative livestock waste treatment systems in the context of multi-barrier strategies for protecting water quality from agricultural contamination. Specifically, we consider some aspects of how enteric bacterial populations can evolve during manure storage, how their fate following land application of manure can vary according to manure composition, and finally the challenge of distinguishing enteric pathogens of agricultural provenance from those of other sources of fecal pollution at a policy-relevant watershed scale. The beneficial impacts of livestock waste treatment on risk to humans via exposure to manured land are illustrated using quantitative microbial risk assessment (QMRA) scenarios. Overall, innovative livestock treatment systems offer a crucially important strategy for making livestock wastes more benign before they are released into the broader environment.  相似文献   

17.
18.
The national ecological footprint of both consumption and production are significantly spatially autocorrelated at global level. This violates the assumption of independently distributed errors of most conventional estimation techniques. Using a spatial econometric approach, this paper re-examine the relationship between economic growth and environmental impact for indicator of ecological footprint. The results do not show evidence of inverted U-shape Environmental Kuznets Curve. The domestic ecological footprint of consumption (or production) was obviously influenced by the ecological footprint of consumption (or production), income and biocapacity in neighborhood countries. We also found that the consumption footprint is more sensitive to domestic income, while production footprint is more sensitive to domestic biocapacity, which is often unnoticed in EKC hypothesis analyses that focus exclusively on the consumption-based or production-based indictors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号