首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smooth muscle membrane potential and tension in rat isolated small mesenteric arteries (inner diameter 100-200 microm) were measured simultaneously to investigate whether the intensity of smooth muscle stimulation and the endothelium influence responses to exogenous K+. Variable smooth muscle depolarization and contraction were stimulated by titration with 0.1-10 microM phenylephrine. Raising external K+ to 10.8 mM evoked correlated, sustained hyperpolarization and relaxation, both of which were inhibited as the smooth muscle depolarized and contracted to around -38 mV and 10 mN, respectively. At these higher levels of stimulation, raising the K+ concentration to 13.8 mM still hyperpolarized and relaxed the smooth muscle. Relaxation to endothelium-derived hyperpolarizing factor, released by ACh, was not altered by the level of stimulation. In endothelium-denuded arteries, the concentration-relaxation curve to K+ was shifted to the right but was not depressed. In denuded arteries, relaxation to K+ was unaffected by the extent of prior stimulation and was blocked with 0.1 mM ouabain but not with 30 microM Ba2+. The ability of K+ to stimulate simultaneous hyperpolarization and relaxation in the mesenteric artery is consistent with a role as an endothelium-derived hyperpolarizing factor activating inwardly rectifying K+ channels on the endothelium and Na+-K+-ATPase on the smooth muscle cells.  相似文献   

2.
Chen SJ  Wu CC  Yang SN  Lin CI  Yen MH 《Life sciences》2000,68(6):659-668
We have examined the role of membrane hyperpolarization in mediating vascular hyporeactivity induced by bacterial lipopolysaccharide (LPS) in endothelial-denuded strips of rat thoracic aorta ex vivo. The injection of rats with LPS caused a significant fall of blood pressure and a severe vascular hyporeactivity to norepinephrine. The membrane potential recording showed that endotoxemia caused a hyperpolarization when compared to the control. This hyperpolarization was fully restored by methylene blue (MB; 10 microM) and partially reversed by Nomega-nitro-L-arginine methyl ester (L-NAME; 0.3 mM), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), tetraethylammonium (TEA; 10 mM), charybdotoxin (CTX; 0.1 microM), or glibenclamide (GB; 10 microM), however, this hyperpolarization was not significantly affected by apamin (0.1 microM), 4-aminopyridine (4-AP; 1 mM), or Ba2+ (50 microM). In addition, the basal tension of the tissues obtained from endotoxemic rats was enhanced by the following order: MB > or = ODQ > TEA > or = L-NAME > or = CTX > GB; whereas apamin, 4-AP or Ba2+ had no significant effects on these tissues. In contrast, none of these inhibitors had significant effects on the membrane potential or the basal tension in control tissues. Our electrophysiological results further confirmed previous studies showing that in addition to nitric oxide, the large conductance Ca2+-activated K+-channels and ATP-sensitive K+-channels are, most likely, responsible for endotoxin-mediated hyporeactivity to vasoconstrictor agents in vascular smooth muscle.  相似文献   

3.
Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that permitted rapid changes in the ion composition of the serosal solution. The transepithelial electrical properties exhibited a marked seasonal variation that could be attributed to variations in the conductance of the shunt pathway, apical membrane selectivity, and basolateral Na+ transport. In contrast, the passive electrical properties of the basolateral membrane remained constant throughout the year. The apparent transference numbers (Ti) of the basolateral membrane for K+ and Cl- were determined from the effect on the basolateral membrane equivalent electromotive force of a sudden increase in the serosal K+ concentration from 2.5 to 50 mM/liter or a decrease in the Cl- concentration from 101 to 10 mM/liter. TK and TCl were 0.71 +/- 0.05 and 0.04 +/- 0.01, respectively. The basolateral K+ conductance could be blocked by Ba2+ (0.5 mM), Cs+ (10 mM), or Rb+ (10 mM), but was unaffected by 3,4-diaminopyridine (100 microM), decamethonium (100 microM), or tetraethylammonium (10 mM). We conclude that a highly selective K+ conductance dominates the electrical properties of the basolateral membrane and that this conductance is different from those found in nerve and muscle membranes.  相似文献   

4.
In this paper we report on a hypoosmolality induced current, I(osmo), in embryonic chicken osteoclasts, which could only be studied when blocking a simultaneously active, unidentified slow outward current, I(slo). I(slo) was observed in all of the examined cells when both the intracellular and extracellular solutions contained sodium as the major cation and no potassium. The current was outwardly rectifying and activated at membrane potentials more positive than -44 +/- 12 mV (n = 31). The time to half activation of the current was also voltage dependent and was 350 ms at Vm = +80 mV, and 78 ms at Vm = +120 mV. The current did not inactivate during periods up to 5 s. Extracellular 4-AP (5 mM), TEA (5 mM) and Ba2+ (1 mM), blockers of K+ conductances in chicken osteoclasts, did not influence I(slo). However, I(slo) was inhibited by 50 microM extracellular verapamil, which allowed us to study I(osmo) in isolation. Exposure of the osteoclasts to hypotonic solution resulted in the development of a depolarization activated I(osmo). It developed after a 1-min delay and reached its maximum within 10 minutes. Half-maximal activation occurred after 4.4 +/- 0.9 min (n = 9). The current activated within a few ms upon depolarization and did not inactivate during at least 5 sec. I(osmo) reversed around the calculated Nernst potential for Cl- (E(Cl) = +7.3 mV and V(rev) = +5.4 +/- 3.6 mV, n = 9). The underlying conductance, G(osmo) exhibited moderate outward rectification around 0 mV in symmetrical Cl- solutions. Ion substitution experiments showed that G(osmo) is an anion conductance with P(Cl) approximately = P(F) > P(gluc) > P(Na). I(osmo) was blocked by 0.5 mM SITS but 50 microM verapamil, 5 mM TEA, 5 mM 4-AP, 1 mM Ba2+, 50 microM cytochalasin D and 0.5 mM alendronate did not have any effect on the current. Cl- currents have been implicated in charge neutralization during osteoclastic acid secretion for bone resorption. The present results imply that osmolality may be a factor controlling this charge neutralization.  相似文献   

5.
We previously demonstrated a role for voltage-dependent K(+) (K(V)) channels in coronary vasodilation elicited by myocardial metabolism and exogenous H(2)O(2), as responses were attenuated by the K(V) channel blocker 4-aminopyridine (4-AP). Here we tested the hypothesis that K(V) channels participate in coronary reactive hyperemia and examined the role of K(V) channels in responses to nitric oxide (NO) and adenosine, two putative mediators. Reactive hyperemia (30-s occlusion) was measured in open-chest dogs before and during 4-AP treatment [intracoronary (ic), plasma concentration 0.3 mM]. 4-AP reduced baseline flow 34 +/- 5% and inhibited hyperemic volume 32 +/- 5%. Administration of 8-phenyltheophylline (8-PT; 0.3 mM ic or 5 mg/kg iv) or N(G)-nitro-L-arginine methyl ester (L-NAME; 1 mg/min ic) inhibited early and late portions of hyperemic flow, supporting roles for adenosine and NO. 4-AP further inhibited hyperemia in the presence of 8-PT or L-NAME. Adenosine-induced blood flow responses were attenuated by 4-AP (52 +/- 6% block at 9 microg/min). Dilation of arterioles to adenosine was attenuated by 0.3 mM 4-AP and 1 microM correolide, a selective K(V)1 antagonist (76 +/- 7% and 47 +/- 2% block, respectively, at 1 microM). Dilation in response to sodium nitroprusside, an NO donor, was attenuated by 4-AP in vivo (41 +/- 6% block at 10 microg/min) and by correolide in vitro (29 +/- 4% block at 1 microM). K(V) current in smooth muscle cells was inhibited by 4-AP (IC(50) 1.1 +/- 0.1 mM) and virtually eliminated by correolide. Expression of mRNA for K(V)1 family members was detected in coronary arteries. Our data indicate that K(V) channels play an important role in regulating resting coronary blood flow, determining duration of reactive hyperemia, and mediating adenosine- and NO-induced vasodilation.  相似文献   

6.
Excitability changes evoked by the inhibitory neurotransmitter, GABA (gamma-aminobutyric acid) in myelinated axons of dorsal and ventral roots of the isolated bullfrog sciatic nerve were compared in the absence and presence of K+ channel blockers. Half-maximal A-fiber responses to a 0.5-Hz stimulation of the whole nerve were recorded from individual roots. Direct applications of Ringer with raised K+ levels to the site of stimulation caused increases in excitability of both dorsal and ventral root fibers, which resembled those evoked in the ventral root by the GABA agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]ol). The increases in dorsal root fiber responses produced by GABA were depressed by tetraethylammonium (TEA) (3 mM), 4-aminopyridine (4-AP) (50 microM), Cs (2 mM), and Ba (1 mM). Ventral root fibers were less consistently affected. The early component of GABA-evoked excitability increases was depressed by 4-AP, Cs, and Ba, but greatly augmented by TEA. THIP-evoked changes in the excitability of the dorsal and ventral root fibers were, respectively, depressed and enhanced by TEA. The augmenting effect of TEA on the early component of GABA agonist effects on the ventral root fibers is attributed to their high resting K+ conductance and the presence of a slowly inactivating, fast K+ current (If1). The depressant effects of K+ channel blockade on depolarizing components of agonist-evoked changes in dorsal and ventral root responses indicate interference with release and (or) sensitivity to K+ and a possible contribution from a mechanism involving voltage-dependent delayed rectifier K+ currents.  相似文献   

7.
To study the properties of the Na extrusion mechanism, giant muscle fibers from barnacle (Balanus nubilus) were internally perfused with solutions containing tracer 22Na. In fibers perfused with solutions containing adenosine 5'-triphosphate (ATP) and 30 mM Na, the Na efflux into 10 mM K seawater was approximately 25-30 pmol/cm2.s; 70% of this efflux was blocked by 50-100 microM ouabain, and approximately 30% was blocked by removal of external K. The ouabain-sensitive and K-dependent Na effluxes were abolished by depletion of internal ATP and were sigmoid-shaped functions of the internal Na concentration ([Na]i), with half-maxima at [Na]i approximately or equal to 20 mM. These sigmoid functions fit the Hill equation with Hill coefficients of approximately 3.5. Ouabain depolarized ATP-fueled fibers by 1.5-2 mV ([Na]i greater than or equal to 30 mM) but had very little effect on the membrane potential of ATP-depleted fibers; ATP depletion itself caused a 2-2.5- mV depolarization. When fueled fibers were treated with 3,4- diaminopyridine or Ba2+ (to reduce the K conductance and increase membrane resistance), application of ouabain produced a 4-5 mV depolarization. These results indicate that an electrogenic, ATP- dependent Na-K exchange pump is functional in internally perfused fibers; the internal perfusion technique provides a convenient method for performing transport studies that require good intracellular solute control.  相似文献   

8.
The effects of sodium nitrite (0.1, 1, 10 mM) on mechanical activity of isolated rat stomach fundus muscle and the influence of guanylate cyclase activity inhibitor (methylene blue) and channel inhibitors (tetrodotoxin, charybdotoxin, apamin) were studied. Nitrite evoked dose-dependent relaxation in the longitudinal and circular muscle layers. The lowest effective concentration of sodium nitrite was 0.1 mM, which is comparable with the NOAEL (no observed adverse effect level). Tetrodotoxin (1 microM) markedly inhibited electrically induced contraction and rebound relaxation, but did not influence the nitrite-induced relaxation. Charybdotoxin (100 nM) decreased the relaxation evoked by 10 mM nitrite to 52.3 and 65.7% of control reaction in the circular and longitudinal muscle layer, respectively. Apamin (100 nM) did not influence the nitrite-induced relaxation. Methylene blue (10 microM) decreased relaxation induced by nitrite in the longitudinal and circular muscle layer, respectively, to 66.7 and 54.3% of the response to 1 mM nitrite alone. Relaxation induced by nitrite was decreased in the presence of L-cysteine (5 mM), and in the circular and longitudinal muscle layer reached 29.6 and 23.1%, respectively, of the response to 1 mM nitrite alone. We conclude that the relaxing effect of nitrite on gastric fundus results from its direct action on smooth muscle cells and probably the enteric nervous system is not involved in this action. The nitrite-elicited relaxation depends on activation of guanylate cyclase and high conductance Ca2+-activated potassium channels; however, activation of potassium channels might be a part of or might act in parallel with the mechanism involving the cyclic GMP system. Effects of nitrite observed in the presence of L-cysteine suggest that nitrosothiols are not responsible for nitrite-evoked activation of guanylate cyclase.  相似文献   

9.
Conduction in inward rectifier, K+-channels in Aplysia neuron and Ba++ blockade of these channels were studied by rapid measurement of the membrane complex admittance in the frequency range 0.05 to 200 Hz during voltage clamps to membrane potentials in the range -90 to -40 mV. Complex ionic conductances of K+ and Cl- rectifiers were extracted from complex admittances of other membrane conduction processes and capacitance by vector subtraction of the membrane complex admittance during suppressed inward K+ current (near zero-mean current and in zero [K+]0) from complex admittances determined at other [K+]0 and membrane potentials. The contribution of the K+ rectifier to the admittance is distinguishable in the frequency domain above 1 Hz from the contribution of the Cl- rectifier, which is only apparent at frequencies less than 0.1 Hz. The voltage dependence (-90 to -40 mV) of the chord conductance (0.2 to 0.05 microS) and the relaxation time (4-8 ms) of K+ rectifier channels at [K+]0 = 40 mM were determined by curve fits of admittance data by a membrane admittance model based on the linearized Hodgkin-Huxley equations. The conductance of inward rectifier, K+ channels at a membrane potential of -80 mV had a square-root dependence on external K+ concentration, and the relaxation time increased from 2 to 7.5 ms for [K+]0 = 20 and 100 mM, respectively. The complex conductance of the inward K+ rectifier, affected by Ba++, was obtained by complex vector subtraction of the membrane admittance during blockage of inward rectifier, K+ channels (at -35 mV and [Ba++]0 = 5 mM) from admittances determined at -80 mV and at other Ba++ concentrations. The relaxation time of the blockade process decreased with increases in Ba++ concentration. An open-closed channel state model produces the inductive-like kinetic behavior in the complex conductance of inward rectifier, K+ channels and the addition of a blocked channel state accounts for the capacitive-like kinetic behavior of the Ba++ blockade process.  相似文献   

10.
Two different electrophysiological responses in amphibian sympathetic ganglia were studied by means of the sucrose gap technique; the potassium-activated hyperpolarization (KH) which serves as an index of electrogenic Na+ pumping, and the hyperpolarization induced by adrenaline (AdH). Under appropriate experimental conditions, 0.1 microM adrenaline potentiated the KH to 121.5 +/- 7.5% of control (n = 7). This potentiation was blocked by both yohimbine (50 nM) and prazosin (1 microM) but not by propranolol (1 microM). Clonidine (10 nM) potentiated the KH to 113.5 +/- 3.4% of control (n = 5), whereas methoxamine (0.1 microM) was ineffective. Several lines of evidence argued against the hypothesis that the AdH may be generated, in whole or in part, by stimulation of the Na+ pump. For example, the AdH was sometimes completely unaffected when the KH was blocked by ouabain, and the AdH was eliminated by 2 mM Ba2+ even though this cation enhanced membrane hyperpolarization accompanying electrogenic Na+ pumping. These results imply that the electrogenic Na+ pump is not involved in the short-term electrophysiological effects of catecholamines. Despite this, it is possible that the homeostasis of Na+ and K+ in nerve may be regulated by alpha-adrenergic mechanisms.  相似文献   

11.
We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle.  相似文献   

12.
The purpose of the present study was to investigate the relaxant responses to the ATP-sensitive potassium (K(ATP)) channel opener cromakalim in corpus cavernosum strips from 1-, 2-, 4-, 6-, and 8-week streptozocin-induced diabetic rats. Cromakalim (1 nM-0.1 mM) produced concentration-dependent relaxation in phenylephrine (7.5 microM)-precontracted isolated rat corporal strips. Compared with age-matched control animals, a significant enhancement in cromakalim-induced relaxation of corpus cavernosum was observed in 2-week diabetic animals, whereas the relaxant responses to cromakalim were decreased in 6-and 8-week diabetic animals. However, the cromakalim-induced relaxation was not altered in either 1-week or 4-week rat corporal strips in comparison with corresponding age-matched non-diabetic groups. Preincubation with the K(ATP) channel blocker glibenclamide (10 microM) significantly inhibited the cromakalim-induced relaxation in both non-diabetic and diabetic rat corpus cavernosum, but neither the voltage-dependent K(+) channel (K(V)) antagonist 4-aminopyridine (1 mM) nor the calcium-activated K(+) channel (K(Ca)) antagonist charybdotoxin (0.1 microM) had significant effect on cromakalim-induced relaxation in both control and diabetic rat corporal strips. Relaxation responses to the nitric oxide donor sodium nitroprusside (1 nM-0.1 mM) in diabetic rat corpus cavernosum were similar to that of age-matched controls. These data demonstrated that the relaxant responses to cromakalim were altered in diabetic cavernosal strips in a time dependent manner, suggesting that the period of diabetes mellitus may play a key role in the K(ATP) channels function in rat corpus cavernosum.  相似文献   

13.
The present experiments were designed to investigate the effects of omeprazole, a H(+)-K+ ATPase inhibitor, on corporal smooth muscle tone in vitro. All spontaneous contractile activity in the corpus cavernosum was blocked following omeprazole (0.1 mM-1 mM) administration. However atropine (1 microM), Nw-nitro L-arginine methyl ester (L-NAME, 30 microM) or indomethacin (10 microM) did not affect the spontaneous contraction. Omeprazole (10 microM-1 mM) concentration-dependently induced relaxation in corporal smooth muscle precontracted with 10 microM phenylephrine or 80 mM KCl. Pretreatment of corporal tissue with L-NAME (30 microM), indomethacin (10 microM), ammonium chloride (7.5 mM), sodium acetate (7.5 mM), tetraethyl ammonium chloride (0.5 mM) or glibenclamide (1 microM) had no effect on the omeprazole induced relaxant responses. Nimodipine, an L-type Ca++ channel blocker, relaxed corporal strips precontracted with 80 mM KCl. Collectively, these results indicate that the inhibition of spontaneous contraction and the relaxation of precontracted corporal smooth muscle by omeprazole is probably mediated by the blockade of calcium channels. Further work is needed to determine the cellular mechanism(s) of action by which omeprazole acts on corpus cavernosum smooth muscle.  相似文献   

14.
The contractile effects of 4-aminopyridine (4-AP) on isolated frog rectus abdominis muscles were examined, and compared with KCl-induced contractures. 4-AP (1-40 mM) caused slowly developing, concentration-dependent contractures which were not modified by (+)-tubocurarine (2.7-13.3 microM). The contractures were prolonged and very slowly relaxed (greater than 30 min) on washout. KCl-induced contractures developed more rapidly and relaxation was equally rapid, both occurring within 90 s of application and washout, respectively. KCl contractures were slightly but significantly (P less than 0.05) attenuated by (+)-tubocurarine in concentrations that blocked carbachol contractures. In calcium-free Ringer's solution, KCl (10-120 mM) responses were completely abolished, but 4-AP concentration-response curves were shifted to the right three- to four-fold. The results show that 4-AP causes contracture of the frog rectus abdominis. It is suggested that at the lower concentration employed (less than 10 mM), 4-AP increases extracellular calcium entry into the muscle, while larger concentrations produce contractures by a direct intracellular mechanism. 4-AP contractures were independent of postjunctional nicotinic cholinoceptor activation.  相似文献   

15.
In rat small mesenteric arteries, the influence of modulation of basal smooth muscle K+ efflux on the mechanism of endothelium-dependent hyperpolarization was investigated. The membrane potentials of the vascular smooth muscle cells were measured using conventional microelectrode techniques. Incubation of resting arteries with the gap junction uncoupler carbenoxolone (20 micro M) decreased the endothelium-dependent hyperpolarization elicited by a submaximal concentration of acetylcholine (3 micro M) to about 65% of the control. In the presence of Ba2+ (200 micro M), which depolarized the membrane potential by 10 mV, the acetylcholine-induced membrane potential response was doubled in magnitude, reaching values not different from control. Moreover, the hyperpolarization was more resistant to carbenoxolone in these conditions. Finally, both in the absence and in the presence of carbenoxolone, the combined application of Ba2+ and ouabain (0.5 mM) did not abolish the acetylcholine response. These results suggest that gap junctional coupling plays a role in endothelium-dependent hyperpolarization of smooth muscle cells of resting rat small mesenteric arteries. Additionally, these findings show that the hyperpolarization does not rely on activation of inward rectifying K+ channels. Although a minor contribution of Na-K pumping cannot be excluded, the Ba2+ experiments show that the membrane electrical response is mediated by activation of a Ba2+-resistant K+ conductance.  相似文献   

16.
Two types of transepithelial potential difference (PD) responses have been observed in the bullfrog, Rana catesbeiana, when the K+ concentration is changed in the aqueous solution. (1) A normal response, that is, a decrease in the positivity of the aqueous solution when the K+ is increased in this solution. (2) An anomalous response, that is, an increase in PD when K+ is increased from 0 to 4 mM in the aqueous solution. In present experiments 2 mM Ba2+ results in a significant decrease in transepithelial PD and an increase in resistance (R), consistent with the well-known effect of Ba2+ on the K+ conductance in other biological membranes. In the presence of Ba2+ compared to its absence the normal PD responses were decreased when K+ was increased from 4 to 20 or to 79 mM in the aqueous solution. Barium enhanced, but not significantly, the anomalous PD response (PD increase) when K+ was increased from 0 to 4 mM. An anomalous PD response (PD decrease) was obtained with Ba2+ when K+ was changed from 4 to 0 mM while in its absence the response was normal (PD increase) or did not change. These findings support the concept that anomalous PD responses as a result of the electrogenic (Na+ + K+)-ATPase may be obtained when the resistance of the simple K+ pathway is increased.  相似文献   

17.
NO-induced activation of cGMP-dependent protein kinase (PKG) increases the open probability of large conductance Ca2+-activated K+ channels and results in smooth muscle relaxation. However, the molecular mechanism of channel regulation by the NO-PKG pathway has not been determined on cloned channels. The present study was designed to clarify PKG-mediated modulation of channels at the molecular level. The cDNA encoding the alpha-subunit of the large conductance Ca2+-activated K+ channel, cslo-alpha, was expressed in HEK293 cells. Whole cell and single channel characteristics of cslo-alpha exhibited functional features of native large conductance Ca2+-activated K+ channels in smooth muscle cells. The NO-donor sodium nitroprusside increased outward current 2.3-fold in whole cell recordings. In cell-attached patches, sodium nitroprusside increased the channel open probability (NPo) of cslo-alpha channels 3.3-fold without affecting unitary conductance. The stimulatory effect of sodium nitroprusside was inhibited by the PKG-inhibitor KT5823. Direct application of PKG-Ialpha to the cytosolic surface of inside-out patches increased NPo 3.2-fold only in the presence of ATP and cGMP without affecting unitary conductance. A point mutation of cslo-alpha in which Ser-1072 (the only optimal consensus sequence for PKG phosphorylation) was replaced by Ala abolished the PKG effect on NPo in inside-out patches and the effect of SNP in cell attached patches. These results indicate that PKG activates cslo-alpha by direct phosphorylation at serine 1072.  相似文献   

18.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

19.
The effects of eugenol (1-2000 microM) on rat isolated ileum were studied. Eugenol relaxed the basal tonus (IC50 83 microM) and the ileum precontracted with 60 mM KCl (IC50 162 microM), an action unaltered by 0.5 microM tetrodotoxin, 0.2 mM N(G)-nitro-L-arginine methyl ester, 0.5 mM hexamethonium, and 1 microM indomethacin. Eugenol did not alter the resting transmembrane potential (Em) of the longitudinal muscle layer under normal conditions (5.0 mM K+) or in depolarised tissues. Eugenol reversibly inhibited contractions induced by submaximal concentrations of acetylcholine (ACh) and K+ (40 mM) with IC50 values of approximately 228 and 237 microM, respectively. Eugenol blocked the component of ACh-induced contraction obtained in Ca(2+)-free solution (0.2 mM EGTA) or in the presence of nifedipine (1 microM). Our results suggest that eugenol induces relaxation of rat ileum by a direct action on smooth muscle via a mechanism largely independent of alterations of Em and extracellular Ca2+ influx.  相似文献   

20.
The effect of Na-K adenosinetriphosphatase (ATPase) on relaxation induced by isoproterenol, prostaglandin E2, sodium nitroprusside, and forskolin, a specific stimulant of adenylate cyclase, was investigated in canine tracheal smooth muscle strips. Relaxation in response to isoproterenol, prostaglandin E2, and forskolin was significantly decreased after inhibition of the Na-K ATPase by ouabain or a potassium-free medium, but relaxation to sodium nitroprusside was not affected. Relaxation to isoproterenol was greater in muscles contracted by 5-hydroxytryptamine than in those contracted by acetylcholine. The stimulation of Na-K ATPase activity with potassium also caused differences in relaxation between tissues contracted with 5-hydroxytryptamine or acetylcholine. Relaxation caused by isoproterenol by activation of the Na-K-ATPase was also decreased by the Ca2+-channel antagonists, verapamil and diltiazem. The results suggest 1) Na-K ATPase activity modulates relaxation caused by isoproterenol, prostaglandin E2, and forskolin in canine tracheal smooth muscle, 2) isoproterenol or activation of the Na-K ATPase may cause relaxation partly by reducing Ca2+ influx through potential-dependent Ca2+ channels, and 3) the differences in the inhibitory effects of isoproterenol and Na-K ATPase activity on muscles contracted by acetylcholine and 5-hydroxytryptamine could be due to differences between these contractile agents in their dependence on extracellular Ca2+ for activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号