首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the photosynthetic bacterium Rhodospirillum rubrum nitrogenase activity is regulated by reversible ADP-ribosylation of dinitrogenase reductase in response to external so called "switch-off" effectors. Activation of the modified, inactive form is catalyzed by dinitrogenase reductase activating glycohydrolase (DRAG) which removes the ADP-ribose moiety. This study addresses the signal transduction between external effectors and DRAG. R. rubrum, wild-type and P(II) mutant strains, were studied with respect to DRAG localization. We conclude that GlnJ clearly has an effect on the association of DRAG to the membrane in agreement with the effect on regulation of nitrogenase activity. Furthermore, we have generated a R. rubrum mutant lacking the putative ammonium transporter AmtB1 which was shown not to respond to "switch-off" effectors; no loss of nitrogenase activity and no ADP-ribosylation. Interestingly, DRAG was mainly localized to the cytosol in this mutant. Overall the results support our model in which association to the membrane is part of the mechanism regulating DRAG activity.  相似文献   

2.
The P(II) family of proteins is found in all three domains of life and serves as a central regulator of the function of proteins involved in nitrogen metabolism, reflecting the nitrogen and carbon balance in the cell. The genetic elimination of the genes encoding these proteins typically leads to severe growth problems, but the basis of this effect has been unknown except with Escherichia coli. We have analysed a number of the suppressor mutations that correct such growth problems in Rhodospirillum rubrum mutants lacking P(II) proteins. These suppressors map to nifR3, ntrB, ntrC, amtB(1) and the glnA region and all have the common property of decreasing total activity of glutamine synthetase (GS). We also show that GS activity is very high in the poorly growing parental strains lacking P(II) proteins. Consistent with this, overexpression of GS in glnE mutants (lacking adenylyltransferase activity) also causes poor growth. All of these results strongly imply that elevated GS activity is the causative basis for the poor growth seen in R. rubrum mutants lacking P(II) and presumably in mutants of some other organisms with similar genotypes. The result underscores the importance of proper regulation of GS activity for cell growth.  相似文献   

3.
4.
5.
The P(II) protein from Rhodospirillum rubrum was fused with a histidine tag, overexpressed in Escherichia coli, and purified by Ni(2+)-chelating chromatography. The uridylylated form of the P(II) protein could be generated in E. coli. The effects on the regulation of glutamine synthetase by P(II), P(II)-UMP, glutamine, and alpha-ketoglutarate were studied in extracts from R. rubrum grown under different conditions. P(II) and glutamine were shown to stimulate the ATP-dependent inactivation (adenylylation) of glutamine synthetase, which could be totally inhibited by alpha-ketoglutarate. Deadenylylation (activation) of glutamine synthetase required phosphate, but none of the effectors studied had any major effect, which is different from their role in the E. coli system. In addition, deadenylylation was found to be much slower than adenylylation under the conditions investigated.  相似文献   

6.
Oriented whole cell multilayers of Azotobacter vinelandii and Rhodospirillum rubrum were analyzed by electron spin resonance (ESR) spectroscopy to detect possible structural associations between nitrogenase molybdenum-iron (MoFe) protein and cytoplasmic or intracytoplasmic membrane. Initially, protocols were designed to obtain strong molybdenum-iron protein ESR signals in whole cell samples of each organism. Then, two-dimensional orientation of whole cell membranes was demonstrated in whole cell multilayers using doxyl stearate spin label in A. vinelandii and the bacteriochlorophyll a dimer triplet signal, (BCHl a)T2, from the intracytoplasmic membrane-bound photosynthetic apparatus of R. rubrum. Subsequent analysis of the low-field signals, g = 4.3 and g = 3.6, of molybdenum-iron protein in whole cell multilayers of each organism showed orientation-dependent characteristics, although the properties of each were different. Specifically, as the normal to the membrane plane was rotated from perpendicular to parallel with the ESR magnetic field, the amplitude of the g = 3.6 signal decreased from maximum to about 37% of maximum in A. vinelandii and from maximum to about 88% of maximum in R. rubrum. The angular dependence of the g = 4.3 peak during rotation varied in A. vinelandii, but decreased from maximum to about 63% of maximum in R. rubrum. These data suggest that the molybdenum-iron protein of nitrogenase was oriented in response to the physical orientation of cellular membranes and that a structural association may exist between this nitrogenase component and membrane in these organisms.  相似文献   

7.
8.
Glutamine synthetase from Rhodospirillum rubrum was purified and characterized with respect to its pH optimum and the effect of Mg2+ on its active and inactive forms. Both adenine and phosphorus were incorporated into the inactive form of the enzyme, indicating covalent modification by AMP. The modification could not be removed by phosphodiesterase. Evidence for regulation of the enzyme by oxidation was obtained. Extracts from oxygen-treated cells had lower specific activities than did extracts from cells treated anaerobically. Glutamine synthetase activity was found to decrease in the dark in phototrophically grown cells; activity was recovered on re-illumination.  相似文献   

9.
10.
Summary In the presence of both light and air, the metabolism of Rhodospirillum rubrum can be partly respiratory and partly photosynthetic. The relative rates of these modes of metabolism have been measured at a variety of light intensities and oxygen tensions.  相似文献   

11.
12.
Abstract The regulatory properties of Rhodospirillum rubrum nitrogenase reduced by either the endogenous electron donor (ferredoxin) or an artificial donor (dithionite) were examined. The nitrogenase obtained from glutamate-grown cells required activating enzyme for maximum activity with either reductant. The activating enzyme requirement of ferredoxin-dependent nitrogenase activity implies a physiological significance of the activating enzyme in R. rubrum. Rhodopseudomonas capsulata nitrogenase also required activating enzyme when dithionite was the reductant, but there appeared to be no activating enzyme requirement with ferredoxin as the reductant. Because the catalytic activity of the enzyme was very low under these conditions, the physiological significance of activating enzyme in this organism remains in question.  相似文献   

13.
The carboxyl group reagents dicyclohexylcarbodiimide (DCCD) and N-ethoxycarboxyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) inactivate the soluble Rhodospirillum rubrum F1-ATPase (RrF1). The inactivation is both time- and concentration-dependent and also pH-dependent, being more marked at acid pH. Under the same conditions, N-ethyl-5-phenylisoxazolium 3'-sulfonate causes almost no inactivation of the RrF1-ATPase. Complete inhibition of the enzyme activity requires the binding of 1 mol of DCCD/mol of RrF1. The isolated, reconstitutively active, beta-subunit of RrF1 is affected by the three carboxyl group reagents in a very similar manner to the RrF1-ATPase. Incubation of the beta-subunit with DCCD and EEDQ eliminates its capacity to rebind to beta-less chromatophores. Consequently the DCCD or EEDQ-modified beta-subunit cannot restore ATP synthesis or hydrolysis activities to the beta-less chromatophores. The interaction of the isolated beta-subunit with DCCD and EEDQ is both time and concentration dependent. The elimination of the reconstitutive activity of the beta-subunit by DCCD is accompanied with a covalent binding of about 1 mol of [14C]DCCD/mol of beta and is pH-dependent, showing a half-maximal effect at about pH 7.4. Divalent cations, inorganic phosphate, and to a lesser extent ATP and ADP decrease the binding stoichiometry of DCCD to the beta-subunit. Pretreatment of either RrF1 or its isolated beta-subunit with EEDQ reduces drastically their ability to bind [14C]DCCD, suggesting that in both RrF1 and the beta-subunit, EEDQ and DCCD might react at the same site. The similar effect of the carboxyl group reagents on RrF1 and on its isolated beta-subunit is in accord with the suggestion that DCCD and EEDQ affect the F1-ATPases by interacting with their beta-subunits.  相似文献   

14.
15.
The carboxylase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPC/O) decreased when an anaerobic culture of Rhodospirillum rubrum was exposed to atmospheric levels of oxygen. From 70 to 80% of the activity was lost within 12 to 24 h. Inactivation was apparent when the enzyme was assayed in situ (in whole cells) and when activity was measured in dialyzed crude extracts. The quantity of enzyme protein, as estimated from sodium dodecyl sulfate-polyacrylamide gels or as quantified immunologically, did not decrease within 24 h of exposure to air. Following extended exposure to aerobic conditions (48 to 72 h), degradation of enzyme occurred. These results indicate that the inactivation of RuBPC/O in R. rubrum may be due to an alteration or modification of the preformed enzyme, followed by eventual degradation of the inactive enzyme. When shifted back to anaerobic conditions (under an argon atmosphere), the RuBPC/O activity increased rapidly. This increase appeared to be due to de novo synthesis of enzyme. The increase in activity was not observed when the culture was maintained in the dark or in the absence of a suitable carbon source. Thus, the oxygen-mediated inactivation of RuBPC/O appeared to be due to some form of irreversible modification. The cloned R. rubrum RuBPC/O gene, expressed in Escherichia coli, yielded functional enzyme that was not affected by oxygen, indicating that inactivation in R. rubrum is mediated by a gene product(s) not found in E. coli.  相似文献   

16.
Summary The threshold strength-duration relationships were determined for the phototactic excitation of Rhodospirillum rubrum by various pulses and pairs of pulses of change in light intensity. The recovery of excitability after a response was followed, and examples of rhythmic behavior were recorded.Exprimental results were found to be in fair agreement with data for other irritable systems and with the predictions of the theories of Rashevsky and Hill.The hypothesis was considered that all excitable systems might share a common mechanism for irritability, and the phototactic mechanisms of various unicellular organisms were discussed in this connection.  相似文献   

17.
The interaction of the Rhodospirillum rubrum cytochrome bc1 complex with R. rubrum cytochrome c2 and horse cytochrome c was studied using specific lysine modification and ionic strength dependence methods. In order to define the reaction domain on cytochrome c2, several fractions consisting of mixtures of singly labeled carboxydintrophenyl-cytochrome c2 derivatives were employed. Fraction A consisted of a mixture of derivatives modified at lysines 58, 81, and 109 on the back of cytochrome c2, while fractions C1, C2, C3, and C4 were mixtures of singly labeled derivatives modified at lysines 9, 13, 75, 86, and 88 on the front of cytochrome c2 surrounding the heme crevice. The rate of the reaction of fraction A was found to be nearly the same as that of native cytochrome c2. However, the rate constants of fractions C1-C4 were found to be more than 20-fold smaller than that of native cytochrome c2. These results indicate that lysine residues surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site on the cytochrome bc1 complex. Since the same domain is involved in the reaction with the photosynthetic reaction center, cytochrome c2 must undergo some type of rotational or translational diffusion during electron transport in R. rubrum. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysines 8, 13, 25, 27, 72, 79, and 87 surrounding the heme crevice was found to significantly lower the rate of the reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse cytochrome c also involves the heme crevice domain.  相似文献   

18.
Kim K  Zhang Y  Roberts GP 《FEBS letters》2004,559(1-3):84-88
In Rhodospirillum rubrum, nitrogenase activity is subject to posttranslational regulation through the adenosine diphosphate (ADP)-ribosylation of dinitrogenase reductase by dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase-activating glycohydrolase (DRAG). To study the posttranslational regulation of DRAG, its gene was mutagenized and colonies screened for altered DRAG regulation. Three different mutants were found and the DRAG variants displayed different biochemical properties including an altered affinity for divalent metal ions. Taken together, the results suggest that the site involved in regulation is physically near the metal binding site of DRAG.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号