首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Downstream A3 receptor signalling plays an important role in the regulation of cell death and proliferation. Therefore, it is important to determine the molecular pathways involved through A3 receptor stimulation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. The crosstalk between these two pathways has also been investigated. The focus of this review centres on downstream mediators of A3 adenosine receptor signalling.  相似文献   

2.
Altered phosphorylation status of the C-terminal Thr residues of Ezrin/Radixin/Moesin (ERM) is often linked to cell shape change. To determine the role of phophorylated ERM, we modified phosphorylation status of ERM and investigated changes in cell adhesion and morphology. Treatment with Calyculin-A (Cal-A), a protein phosphatase inhibitor, dramatically augmented phosphorylated ERM (phospho-ERM). Cal-A-treatment or expression of phospho-mimetic Moesin mutant (Moesin-TD) induced cell rounding in adherent cells. Moreover, reattachment of detached cells to substrate was inhibited by either treatment. Phospho-ERM, Moesin-TD and actin cytoskeleton were observed at the plasma membrane of such round cells. Augmented cell surface rigidity was also observed in both cases.Meanwhile, non-adherent KG-1 cells were rather rich in phospho-ERM. Treatment with Staurosporine, a protein kinase inhibitor that dephosphorylates phospho-ERM, up-regulated the integrin-dependent adhesion of KG-1 cells to substrate.These findings strongly suggest the followings: (1) Phospho-ERM inhibit cell adhesion, and therefore, dephosphorylation of ERM proteins is essential for cell adhesion. (2) Phospho-ERM induce formation and/or maintenance of spherical cell shape. (3) ERM are constitutively both phosphorylated and dephosphorylated in cultured adherent and non-adherent cells.  相似文献   

3.
Altered phosphorylation status of the C-terminal Thr residues of Ezrin/Radixin/Moesin (ERM) is often linked to cell shape change. To determine the role of phophorylated ERM, we modified phosphorylation status of ERM and investigated changes in cell adhesion and morphology. Treatment with Calyculin-A (Cal-A), a protein phosphatase inhibitor, dramatically augmented phosphorylated ERM (phospho-ERM). Cal-A-treatment or expression of phospho-mimetic Moesin mutant (Moesin-TD) induced cell rounding in adherent cells. Moreover, reattachment of detached cells to substrate was inhibited by either treatment. Phospho-ERM, Moesin-TD and actin cytoskeleton were observed at the plasma membrane of such round cells. Augmented cell surface rigidity was also observed in both cases.

Meanwhile, non-adherent KG-1 cells were rather rich in phospho-ERM. Treatment with Staurosporine, a protein kinase inhibitor that dephosphorylates phospho-ERM, up-regulated the integrin-dependent adhesion of KG-1 cells to substrate.

These findings strongly suggest the followings: (1) Phospho-ERM inhibit cell adhesion, and therefore, dephosphorylation of ERM proteins is essential for cell adhesion. (2) Phospho-ERM induce formation and/or maintenance of spherical cell shape. (3) ERM are constitutively both phosphorylated and dephosphorylated in cultured adherent and non-adherent cells.  相似文献   

4.
The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups.  相似文献   

5.
摘要 目的:探讨人树突状细胞体外大量培养及鉴定方法。方法:采用免疫磁珠法分离纯化CD34+干细胞;采用含有TPO、SCF、Flt3L和IL-3的扩增培养基培养1周,以及含有SCF、Flt3L、GM-CSF和IL-4的分化培养基培养2-3周,获得CD34+细胞来源树突状细胞。采用普通光学显微镜观察细胞形态,牛鲍氏血细胞计数板进行细胞计数,荧光抗体标记、流式细胞仪检测细胞纯度和细胞表面共刺激分子的表达情况。结果:以含有TPO、SCF、Flt3L和IL-3的培养基扩展培养一周,及含有SCF、Flt3L、GM-CSF和IL-4的培养基诱导分化3周,可获得大量悬浮细胞;细胞数目扩增倍数约达50倍;普通光学显微镜下可见悬浮细胞有明显的树突状凸起;流式细胞术检测结果显示悬浮细胞中CD141和CD11c双阳性细胞(等同于单核细胞来源树突状细胞)比例达30%,此群细胞高表达HLA-DR和CD209,低表达共刺激分子CD80和CD86;细胞寿命较短,40天时培养体系中悬浮细胞和CD34+细胞来源树突状细胞数目急剧减少。结论:采用多细胞因子联合刺激可获得大量的树突状细胞,为树突状细胞的特性及功能学研究奠定了基础。  相似文献   

6.
7.
探索恒河猴皮肤干细胞的体外培养及纯化条件,为进一步的研究奠定基础. 通过组织块培养法和消化培养法 在体外培养恒河猴表皮细胞,然后用Ⅳ型胶原吸附法吸附20 min,获得快吸附细胞. 对快吸附细胞进行克隆培养,并进行免疫细胞化学双标染色、RT PCR鉴定 β1 整合素和角蛋白15的表达,用流式细胞仪鉴定纯化前后的细胞中 β1 整合素和角蛋白15的阳性细胞比例,并通过透射电镜观察细胞的超微结构. 组织块培养法和消化培养法均可获得表皮细胞,Ⅳ型胶原纯化后的细胞胞体较小,饱满,核/浆比例大,细胞镶嵌状排列. 细胞克隆分析显示,细胞全克隆生长率高. 细胞免疫荧光显示,分选后的细胞显示 β1 整合素和角蛋白15阳性. RT PCR检查呈现 β1 整合素和角蛋白15的特异性片段. 流式细胞仪检查显示,纯化前的细胞中角蛋白15阳性细胞占总细胞中的比例为8%, β1 整合素阳性细胞的比例为10.7%;纯化后,角蛋白15阳性细胞的比例为89.4%, β1 整合素阳性细胞的比例为88.5%. 通过组织块培养法和消化培养法均可培养获得活性良好的表皮细胞,Ⅳ型胶原吸附法是一种简便、有效的皮肤干细胞分离方法,可以为进一步的眼表上皮替代重建眼表提供足量的高纯度的干细胞建立可靠的物质基础.  相似文献   

8.
Morbidity and mortality from cirrhosis is increasing rapidly in the world. Currently, orthotopic liver transplantation is the only definitive therapeutic option. However, its clinical use is limited, because of poor long‐term graft survival, donor organ shortage and high costs associated with the procedure. Stem cell replacement strategies are therefore being investigated as an attractive alternative approach to liver repair and regeneration. In this review we discuss recent preclinical and clinical investigations that explore the therapeutic potential of stem cells in repair of liver injuries. Several types of stem cells. including embryonic stem cells, haematopoietic stem cells and mesenchymal stem cells, can be induced to differentiate into hepatocyte‐like cells by defined culture conditions in vitro. Stem cell transplantation has been shown to significantly improve liver function and increase animal survival in experimentally‐induced liver‐injury models. Moreover, several pilot clinical studies have reported encouraging therapeutic effects in patients treated with stem cells. Although there remain many unresolved issues, the available data support the notion that stem cell technology may lead to the development of effective clinical modalities for human liver diseases.  相似文献   

9.
本文通过斑点印渍杂交技术和放射免疫分析方法,首次证实,~3H-TdR放射线转化C3H/10T1/2细胞株可高表达TGFα mRNA,并可向细胞外分泌具有免疫活性的TGFα分子,而非转化对应细胞中虽有TG FαmRNA的弱表达,但其无血清培养上清中未测到TGFα的分泌。表明TGFα参与了放射线对细胞的转化以及维持转化细胞增殖的过程。提示TGFα在三大致癌因素转化细胞中的存在可能具有普遍意义。同时,c-myc与c-fos两种癌基因mRNA在转化细胞中的表达水平显著高于非转化对应细胞,而c-sis癌基因mRNA的表达水平在两种细胞中无显著差异。  相似文献   

10.
直接用可溶性Jagged-1/Fc嵌合蛋白(Jagged-1/Fc)在体外诱导小鼠淋巴结细胞向CD4 CD25 T细胞分化.通过荧光标记单克隆抗体染色结合流式细胞术,观察不同剂量Jagged-1/Fc在不同时间对淋巴结细胞向CD4 CD25 T细胞分化的影响,观察Jagged-1/Fc诱导T细胞内细胞因子的变化;藉ELISA法检测Jagged-1/Fc诱导分化的T细胞分泌TGF-β1、IL-4和IL-10的水平.结果显示,超过500.0μg/L剂量的Jagged-1/Fc使CD4 CD25 T细胞百分比明显增高,诱导时间需要4~6天,抗Jagged-1单抗能抵消Jagged-1/Fc的诱导作用,用DAPT阻断Notch信号通路的活化也能抑制Jagged-1/Fc的诱导作用,Jagged-1/Fc诱导分化的T细胞培养上清中IL-4和IL-10的水平明显增高,TGF-β1无明显变化,胞内IL-4,IL-10,IL-2和TNF-α的水平也呈增高趋势.上述结果表明,可溶性Jagged-1/Fc嵌合蛋白在体外可诱导小鼠淋巴结细胞向CD4 CD25 调节性T细胞分化.  相似文献   

11.
12.
Transport of phosphate has been studied in subconfluent monolayers of LLC-PK1 cells. It was found that this transport system shows similar characteristics to those observed in the kidney. Uptake of phosphate is mediated by a Na+-dependent, substrate-saturable process with an apparent Km value for phosphate of 96 ± 15 μmol/1. Kinetic analysis of the effect of Na+ indicated that at (pH 7.4) two sodium ions are cotransported with one HPO42? ion (Hill coefficient 1.5) with an apparent Km value for sodium of 56 mmol/l. Pi uptake is inhibited by metabolic inhibitors (ouabain and FCCP). In the pH range of 6.6 of 7.4 Pi uptake rate does not change significantly, indicating that both the monovalent and the divalent form of phosphate are accepted by the transport system. It is suggested that phosphate is transported by LLC-PKi cells together with sodium (2 Na+ :1 HPO42?) in an electroneutral manner down a favourable sodium gradient.  相似文献   

13.
14.
Interleukin IL-17F was expressed in colon epithelial cells and showed multiple functions in colon tumorigenesis. However, the role of IL-17F in colon cancer cell cycle progression remains unclear. In this study, we analyzed the effects of IL-17F on oxidant-induced cell cycle shift in human colon cancer cells. IL-17F overexpressing and wildtype HCT116 cells were challenged with H2O2. Cell cycle distribution analysis showed IL-17F attenuated H2O2-induced G2/M phase arrest by inhibiting S to G2/M transition. We further checked expression levels of two critical cell cycle regulators p21 and p27. The results showed that IL-17F could inhibit H2O2 induced p27 up-regulation. Meanwhile, IL-17F could increase the phosphorylation of p38 after H2O2 treatment. The regulations of p27 level and p38 activity may contribute to the impaired G2/M phase arrest by IL-17F. Taken together, our findings extend IL-17F as an important factor in colon cancer development and provide new insight into the signaling pathway.  相似文献   

15.
Synchronously dividing cultures of the unicellular green alga Scenedesmus obtusiusculus were cultivated for 24 or 70 h in medium high (1000 μM) or low (60 μM) in phosphorus. Aliquots of AlCl3 (0, 37, 74, 111, 148, 185, or 222 μmol) were added daily to 1 l cell suspension at the end of the cell division phase. Algae were also grown in media with different pH, adjusted with HCl, in the absence of AlCl3.
Effects of Al on cell metabolism vary with the intracellular Al concentration and with the concentration of Al available per cell. When the concentration of phosphorus is low, internal concentrations of Al are high and the chlorophyll content and the net dry matter production per cell increase, whereas the photosynthesis and the cell division are increased. Presence of Al in a low P medium decreases the pH of the medium down to 4.5. There are only small effects of Al in the presence of P, due to precipitation of most of the Al with P in the medium.
Despite the Al-induced decrease of the pH of the culture medium, effects caused by Al cannot be explained as a pH effect. Instead, the Al effect may, at least to some extent, be related to a decrease in availability of P in the metabolism, due to formation of aluminium phosphate inside the cell.  相似文献   

16.
Cellular activities in the regulation of growth or adhesion/migration involve protein (lectin)–carbohydrate recognition at the cell surface. Members of the galectin family of endogenous lectins additionally bind distinct intracellular ligands. These interactions with protein targets explain the relevance of their nuclear and cytoplasmic presence. Expression profiling for galectins and accessible binding sites is a histochemical approach to link localization with cellular growth properties. Non-cross-reactive antibodies for the homodimeric (proto-type) galectins-1, -2 and -7 and the chimera-type galectin-3 (Gal-3) as well as the biotinylated lectins were tested. This analysis was performed with the FaDu squamous carcinoma cell line and long-term cultured human and porcine epidermal cells as models for malignant and normal cells of squamous cell epithelial origin. A set of antibodies was added for phenotypic cell characterization. Strong nuclear and cytoplasmic signals of galectins and the differential reactivity of labeled galectins support the notion of their individual properties. The length of the period of culture was effective in modulating marker expression. Cytochemical expression profiling is a prerequisite for the selection of distinct proteins for targeted modulation of gene expression as a step toward functional analysis.  相似文献   

17.
While miRs have been extensively studied in the context of malignancy and tumor progression, their functions in regulating T-cell activation are less clear. In initial studies, we found reduced levels of miR-15a/16 at 3 to 18 h post–T-cell receptor (TCR) stimulation, suggesting a role for decreased levels of this miR pair in shaping T-cell activation. To further explore this, we developed an inducible miR15a/16 transgenic mouse model to determine how elevating miR-15a/16 levels during early stages of activation would affect T-cell proliferation and to identify TCR signaling pathways regulated by this miR pair. Doxycycline (DOX)-induced expression of miR-15a/16 from 0 to 18 h post-TCR stimulation decreased ex vivo T-cell proliferation as well as in vivo antigen-specific T-cell proliferation. We also combined bioinformatics and proteomics approaches to identify the mitogen-activated protein kinase kinase 1 (MEK1) (Map2k1) as a target of miR-15a/16. MEK1 targeting by miR-15a/16 was confirmed using miR mimics that decreased Map2k1 mRNA containing the 3′-UTR target nucleotide sequence (UGCUGCUA) but did not decrease Map2k1 containing a mutated control sequence (AAAAAAAA). Phosphorylation of downstream signaling molecules, extracellular signal–regulated protein kinase 1/2 (ERK1/2) and Elk1, was also decreased by DOX-induced miR-15a/16 expression. In addition to MEK1, ERK1 was subsequently found to be targeted by miR-15a/16, with DOX-induced miR-15a/16 reducing total ERK1 levels in T cells. These findings show that TCR stimulation reduces miR-15a/16 levels at early stages of T-cell activation to facilitate increased MEK1 and ERK1, which promotes the sustained MEK1–ERK1/2–Elk1 signaling required for optimal proliferation.  相似文献   

18.
Eph receptors and their ligands, ephrins, represent the largest group of the receptor tyrosine kinase (RTK) family, and they mediate numerous developmental processes in a variety of organisms. Ephrins are membrane-bound proteins that are mainly divided into two classes: A class ephrins, which are linked to the membrane by a glycosylphosphatidylinositol (GPI) linkage, and B class ephrins, which are transmembrane ligands. Based on their domain structures and affinities for ligand binding, the Eph receptors are also divided into two groups. Trans-dimerization of Eph receptors with their membrane-tethered ligands regulates cell-cell interactions and initiates bidirectional signaling pathways. These pathways are intimately involved in regulating cytoskeleton dynamics, cell migration, and alterations in cellular dynamics and shapes. The EphBs and ephrinBs are specifically localized and modified to promote higher-order clustering and initiate of bidirectional signaling. In this review, we present an in-depth overview of the structure, mechanisms, cell signaling, and functions of EphB/ephrinB in cell adhesion and migration.  相似文献   

19.
近年来,关于胶质细胞有许多令人惊奇的发现。其中最令人感兴趣的是部分胶质细胞在体内外都表现出神经千细胞/祖细胞的特性,在适当条件下能分化成神经元、星形胶质细胞和/或少突胶质细胞。不仅存在于非哺乳类脊椎动物整个生命周期的放射胶质显示出这一特性,存在于成年哺乳动物脑室下区和颗粒下层的星形胶质细胞也是如此。在体外培养中,部分胶质细胞具有形成多潜能神经球的能力。在体内,胶质细胞充当前驱细胞时的命运受到细胞间相互作用、细胞因子、血脉系统、胞外基质以及基膜等所构建的微环境的影响。胶质细胞的这些特性将对神经修复产生深远影响。  相似文献   

20.
A new metal‐oxide‐based interconnecting layer (ICL) structure of all‐solution processed metal oxide/dipole layer/metal oxide for efficient tandem organic solar cell (OSC) is demonstrated. The dipole layer modifies the work function (WF) of molybdenum oxide (MoO x ) to eliminate preexisted counter diode between MoO x and TiO2. Three different amino functionalized water/alcohol soluble conjugated polymers (WSCPs) are studied to show that the WF tuning of MoO x is controllable. Importantly, the results show that S‐shape current density versus voltage (JV) characteristics form when operation temperature decreases. This implies that thermionic emission within the dipole layer plays critical role for helping recombination of electrons and holes. Meanwhile, the insignificant homotandem open‐circuit voltage (V oc) loss dependence on dipole layer thickness shows that the quantum tunneling effect is weak for efficient electron and hole recombination. Based on this ICL, poly(3‐hexylthiophene) (P3HT)‐based homotandem OSC with 1.20 V V oc and 3.29% power conversion efficiency (PCE) is achieved. Furthermore, high efficiency poly(4,8‐bis(5‐(2‐ethylhexyl)‐thiophene‐2‐yl)‐benzo[1,2‐b54,5‐b9]dithiophene‐alt alkylcarbonylthieno[3,4‐b]thiophene) (PBDTTT‐C‐T)‐based homotandem OSC with 1.54 V V oc and 8.11% PCE is achieved, with almost 15.53% enhancement compared to its single cell. This metal oxide/dipole layer/metal oxide ICL provides a new strategy to develop other qualified ICL with different hole transporting layer and electron transporting layer in tandem OSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号