首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes genes from yeast and mouse with significant sequence similarities to aDrosophila gene that encodes the blood cell tumor suppressor pendulin. The protein encoded by the yeast gene, Srp1p, and mouse pendulin share 42% and 51% amino acid identity withDrosophila pendulin, respectively. All three proteins consist of 10.5 degenerate tandem repeats of ~ 42 amino acids each. Similar repeats occur in a superfamily of proteins that includes theDrosophila Armadillo protein. All three proteins contain a consensus sequence for a bipartite nuclear localization signal (NLS) in the N-terminal domain, which is not part of the repeat structure. Confocal microscopic analysis of yeast cells stained with antibodies against Srp1p reveals that this protein is intranuclear throughout the cell cycle. Targeted gene disruption shows thatSRP1 is an essential gene. Despite their sequence similarities,Drosophila and mouse pendulin are unable to rescue the lethality of anSRP1 disruption. We demonstrate that yeast cells depleted of Srp1p arrest in mitosis with a G2 content of DNA. Arrested cells display abnormal structures and orientations of the mitotic spindles, aberrant segregation of the chromatin and the nuclei, and threads of chromatin emanating from the bulk of nuclear DNA. This phenotype suggests that Srplp is required for the normal function of microtubules and the spindle pole bodies, as well as for nuclear integrity. We suggest that Srp1p interacts with multiple components of the cell nucleus that are required for mitosis and discuss its functional similarities to, and differences fromDrosophila pendulin.  相似文献   

2.
This paper describes genes from yeast and mouse with significant sequence similarities to aDrosophila gene that encodes the blood cell tumor suppressor pendulin. The protein encoded by the yeast gene, Srp1p, and mouse pendulin share 42% and 51% amino acid identity withDrosophila pendulin, respectively. All three proteins consist of 10.5 degenerate tandem repeats of 42 amino acids each. Similar repeats occur in a superfamily of proteins that includes theDrosophila Armadillo protein. All three proteins contain a consensus sequence for a bipartite nuclear localization signal (NLS) in the N-terminal domain, which is not part of the repeat structure. Confocal microscopic analysis of yeast cells stained with antibodies against Srp1p reveals that this protein is intranuclear throughout the cell cycle. Targeted gene disruption shows thatSRP1 is an essential gene. Despite their sequence similarities,Drosophila and mouse pendulin are unable to rescue the lethality of anSRP1 disruption. We demonstrate that yeast cells depleted of Srp1p arrest in mitosis with a G2 content of DNA. Arrested cells display abnormal structures and orientations of the mitotic spindles, aberrant segregation of the chromatin and the nuclei, and threads of chromatin emanating from the bulk of nuclear DNA. This phenotype suggests that Srplp is required for the normal function of microtubules and the spindle pole bodies, as well as for nuclear integrity. We suggest that Srp1p interacts with multiple components of the cell nucleus that are required for mitosis and discuss its functional similarities to, and differences fromDrosophila pendulin.  相似文献   

3.
Mutations in mitochondrial DNA (mtDNA) have been reported in cancer and are involved in the pathogenesis of many mitochondrial diseases. Uracil-DNA glycosylase, encoded by the UNG1 gene in Saccharomyces cerevisiae, repairs uracil in DNA formed due to deamination of cytosine. Our study demonstrates that inactivation of the UNG1 gene leads to at least a 3-fold increased frequency of mutations in mtDNA compared with the wild-type. Using a Ung1p–green fluorescent protein (GFP) fusion construct, we demonstrate that yeast yUng1–GFP protein localizes to both mitochondria and the nucleus, indicating that Ung1p must contain both a mitochondrial localization signal (MLS) and a nuclear localization signal. Our study reveals that the first 16 amino acids at the N-terminus contain the yUng1p MLS. Deletion of 16 amino acids resulted in the yUng1p–GFP fusion protein being transported to the nucleus. We also investigated the intracellular localization of human hUng1p–GFP in yeast. Our data indicate that hUng1p–GFP predominately localizes to the mitochondria. Further analysis identified the N-terminal 16 amino acids as important for localization of hUng1 protein into the mitochondria. Expression of both yeast and human UNG1 cDNA suppressed the frequency of mitochondrial mutation in UNG1-deficient cells. However, expression of yUNG1 in wild-type cells increased the frequency of mutations in mtDNA, suggesting that elevated expression of Ung1p is mutagenic. An increase in the frequency of mitochondrial mutants was also observed when hUNG1 site-directed mutants (Y147C and Y147S) were expressed in mitochondria. Our study suggests that deamination of cytosine is a frequent event in S.cerevisiae mitochondria and both yeast and human Ung1p repairs deaminated cytosine in mitochondria.  相似文献   

4.
The eukaryotic genome contains a putative ATPase gene family that encodes proteins with one or two highly conserved domain(s) of approximately 230 amino acids. These proteins have diverse cellular functions and mutation in at least one member of the family has been associated with human disease, while mutations in other family members are known to cause cell cycle defects in yeast. Therefore it is of interest to map more family members and so we have localized PSMC5 (the thyroid hormone receptor-interacting protein, TRIP1) and PSMC3 (the Tat-binding protein, TBP1) to chromosomes 17q24– q25 and 11p12–p13, respectively. We also present the map position of a probable PSMC3 processed pseudogene locus on chromosome 9p. Received: 18 July 1996  相似文献   

5.
6.
The signal recognition particle in S. cerevisiae.   总被引:31,自引:0,他引:31  
B C Hann  P Walter 《Cell》1991,67(1):131-144
We have identified the Saccharomyces cerevisiae homolog of the signal recognition particle (SRP) and characterized its function in vivo. S. cerevisiae SRP is a 16S particle that includes a homolog of the signal sequence-binding protein subunit of SRP (SRP54p) and a small cytoplasmic RNA (scR1). Surprisingly, the genes encoding scR1 and SRP54p are not essential for growth, though SRP-deficient cells grow poorly, suggesting that SRP function can be partially by-passed in vivo. Protein translocation across the ER membrane is impaired in SRP-deficient cells, indicating that yeast SRP, like its mammalian counterpart, functions in this process. Unexpectedly, the degree of the translocation defect varies for different proteins. The ability of some proteins to be efficiently targeted in SRP-deficient cells may explain why previous genetic and biochemical analyses in yeast and bacteria did not reveal components of the SRP-dependent protein targeting pathway.  相似文献   

7.
Mammalian cells secrete a large number of small proteins, but their mode of translocation into the endoplasmic reticulum is not fully understood. Cotranslational translocation was expected to be inefficient due to the small time window for signal sequence recognition by the signal recognition particle (SRP). Impairing the SRP pathway and reducing cellular levels of the translocon component Sec62 by RNA interference, we found an alternate, Sec62-dependent translocation path in mammalian cells required for the efficient translocation of small proteins with N-terminal signal sequences. The Sec62-dependent translocation occurs posttranslationally via the Sec61 translocon and requires ATP. We classified preproteins into three groups: 1) those that comprise ≤100 amino acids are strongly dependent on Sec62 for efficient translocation; 2) those in the size range of 120-160 amino acids use the SRP pathway, albeit inefficiently, and therefore rely on Sec62 for efficient translocation; and 3) those larger than 160 amino acids depend on the SRP pathway to preserve a transient translocation competence independent of Sec62. Thus, unlike in yeast, the Sec62-dependent translocation pathway in mammalian cells serves mainly as a fail-safe mechanism to ensure efficient secretion of small proteins and provides cells with an opportunity to regulate secretion of small proteins independent of the SRP pathway.  相似文献   

8.
The signal recognition particle (SRP) targets nascent secretory proteins to the ER, but how and where the SRP assembles is largely unknown. Here we analyze the biogenesis of yeast SRP, which consists of an RNA molecule (scR1) and six proteins, by localizing all its components. Although scR1 is cytoplasmic in wild-type cells, nuclear localization was observed in cells lacking any one of the four SRP "core proteins" Srp14p, Srp21p, Srp68p, or Srp72p. Consistently, a major nucleolar pool was detected for these proteins. Sec65p, on the other hand, was found in both the nucleoplasm and the nucleolus, whereas Srp54p was predominantly cytoplasmic. Import of the core proteins into the nucleolus requires the ribosomal protein import receptors Pse1p and Kap123p/Yrb4p, which might, thus, constitute a nucleolar import pathway. Nuclear export of scR1 is mediated by the nuclear export signal receptor Xpo1p, is distinct from mRNA transport, and requires, as evidenced by the nucleolar accumulation of scR1 in a dis3/rrp44 exosome component mutant, an intact scR1 3' end. A subset of nucleoporins, including Nsp1p and Nup159p (Rat7p), are also necessary for efficient translocation of scR1 from the nucleus to the cytoplasm. We propose that assembly of the SRP requires import of all SRP core proteins into the nucleolus, where they assemble into a pre-SRP with scR1. This particle can then be targeted to the nuclear pores and is subsequently exported to the cytoplasm in an Xpo1p-dependent way.  相似文献   

9.
Double-stranded DNA breaks are currently thought to initiate homologous DNA recombination during meiosis. These breaks are mediated by several proteins, the key protein is Spol1p. Spo11 proteins being encoded by the highly conserved orthologs of SPO11 are present in most eukaryotes ranging from plants to man and are structurally similar to the subunit A of the archaea topoisomerase VI. The SPO11 of S. cerevisiae is currently known to be expressed during prophase I. It encodes a topoisomerase II that is apparently active as a dimer. Neither its localization in the native cells nor its nuclear localisation signals have been described in the literature. We report the expression of the coding region of SPO11 and its truncated variants C-terminally tagged by the egfp reporter in yeast. As judged by the EGFP fluorescence, the Spo11 p-EGFP fusion was localized in vegetative yeast nuclei whereas Spo11pdelta-EGFP lacking 25 N-terminal amino acids of Spollp was localized in cytoplasm. Nineteen N-terminal amino acids of Spo11p fused to EGFP made some reporter to be localized in the nucleus. Thus, we conclude that N-terminal part of Spo11p is a nuclear localization signal that is not specific for prophase I and is used to import proteins in vegetative yeast cells.  相似文献   

10.
Huntington’s disease (HD) is caused by abnormal CAG repeat expansion in the 5′-end of the Huntingtin (HTT) gene. In addition to the canonical C-terminal full-length huntingtin (htt) nuclear export signal, a cytoplasmic localization-related domain (CLRD) in the N-terminus of htt has recently been reported. Here, we analyzed this domain by introducing deletion and substitution mutations in a truncated N-terminal htt protein and subsequently monitored htt expression, aggregation and subcellular localization by immunocytochemistry and Western blot analysis. We demonstrated that Htt4–17 was the essential sequence for htt cytoplasmic localization. We also found that the subcellular distribution of htt was altered when Htt1–17 was mutated to contain amino acids of different charges, suggesting a structural requirement of Htt1–17 for the cytoplasmic localization of htt. Deletion of the first three amino acids did not affect its association with mitochondria. We observed that defective cytoplasmic localization resulted in a reduction of total htt aggregates and increased nuclear aggregates, indicating that the subcellular distribution of the protein might influence the aggregation process. These studies provide new insight into the molecular mechanism of htt aggregation in HD.  相似文献   

11.
Luo D  Yang Y  Guo J  Zhang J  Guo Z  Liu S  Tian S 《Archives of microbiology》2011,193(9):651-663
14-3-3 proteins are conserved regulatory proteins present in all eukaryotic cells that control numerous cellular activities via targeted protein interactions. To elucidate the interaction between P14-3-3 from Physarum polycephalum and actin in living cells, PCR and DNA recombination were used to generate various P14-3-3 and actin constructs. Yeast two-hybrid assay and FRET were employed to characterize the interaction between P14-3-3 and actin. The two-hybrid assay indicated that P14-3-3 N-terminal 76–108 amino acids and the C-terminal 207–216 amino acids played an important role in mediating interactions with actin, and the actin N-terminal 1–54 amino acids and the C-terminal 326–376 amino acids are also crucial in the interactions with the mPa, a P14-3-3 with mutations at Ser62 (Ser62 → Gly62). Mutations to potential phosphorylation sites did not affect interactions between P14-3-3 and actin. FRET results demonstrated that P14-3-3 co-localized with actin with a FRET efficiency of 22.2% and a distance of 7.4 nm and that P14-3-3 N-terminal 76–108 and C-terminal 207–216 amino acids were important in mediating this interaction, the truncated actin peptides without either the N-terminal 1–54 or C-terminal 326–376 amino acids interacted with P14-3-3, consistent with the results obtained from the yeast two-hybrid assay. Based on data obtained, we identified critical actin and P14-3-3 contact regions.  相似文献   

12.
The yeast Srp1p protein functions as an import receptor for proteins bearing basic nuclear localization signals. Cse1p, the yeast homolog of mammalian CAS, recycles Srp1p back to the cytoplasm after import substrates have been released into the nucleoplasm. In this report we describe genetic interactions between SRP1 and CSE1. Results from genetic suppression and synthetic lethality studies demonstrate that these gene products interact to ensure accurate chromosome segregation. We also describe new mutant alleles of CSE1 and analyze a new temperature-sensitive allele of CSE1, cse1-2. This allele causes high levels of chromosome missegregation and cell cycle arrest during mitosis at the nonpermissive temperature. Received: 18 November 1998 / Accepted: 17 March 1999  相似文献   

13.
Nubp1 (also known as Nbp35) and Nubp2 (also known as Cfd1) proteins are known to be responsible for regulating centrosome duplication in mouse and ribosome biogenesis in yeast. Nubp proteins contribute to diverse physiological functions. It is thought that Nubp1 and Nubp2 proteins interact with each other and regulate their functions. However, little is known about the intracellular localization of Nubp proteins. In this study, we compared the intracellular localization of human Nubp1 and Nubp2 by fusing these proteins with green fluorescent protein (GFP) in HeLa cells. The nuclear transfer of Nubp1–GFP, where GFP was fused to the C-terminus, was not observed. However, GFP–Nubp1, where GFP was fused to the N-terminus, did accumulate in the nucleus. In addition, GFP-modification at the N-terminal of Nubp2 induced nuclear transformation. Our data suggest that the C-terminal region of Nubp1 is important for nuclear transfer and the N-terminal of Nubp2 contributes to the morphology of the nucleus.  相似文献   

14.
Targeting of E. coli beta-galactosidase to the nucleus in yeast   总被引:111,自引:0,他引:111  
M N Hall  L Hereford  I Herskowitz 《Cell》1984,36(4):1057-1065
In order to identify determinants governing nuclear protein localization, we constructed a set of hybrid genes by fusing the S. cerevisiae gene, MAT alpha 2, coding for a presumptive nuclear protein, and the E. coli gene, lacZ, coding for beta-galactosidase. The resultant hybrid proteins contain 3, 13, 25, 67, or all 210 amino acids of wild-type alpha 2 protein at the amino terminus and a constant, enzymatically active portion of beta-galactosidase at the carboxy terminus. Indirect immunofluorescence and subcellular fractionation studies with yeast cells containing the alpha 2-LacZ hybrid proteins indicate that the alpha 2 segment can direct localization of beta-galactosidase to the nucleus. A segment as small as 13 amino acids from alpha 2 is sufficient for this localization. Comparison of amino acid sequences of other nuclear proteins with this region of alpha 2 reveals a sequence that may be necessary for nuclear targeting. Production of some alpha 2-LacZ hybrid proteins causes cell death, perhaps as a result of improper or incomplete localization. These studies also indicate that the alpha 2 protein, argued on genetic grounds to be a negative regulator, acts in the yeast nucleus.  相似文献   

15.
Protein SRP54 is an essential component of eukaryotic signal recognition particle (SRP). The methionine-rich M-domain (SRP54M or 54M) interacts with the SRP RNA and is also involved in the binding to signal peptides of secretory proteins during their targeting to cellular membranes. To gain insight into the molecular details of SRP-mediated protein targeting, we studied the human 54M polypeptide. The recombinant human protein was expressed successfully in Escherichia coli and was purified to homogeneity. Our studies determined the sites that were susceptible to limited proteolysis, with the goal to design smaller functional mutant derivatives that lacked nonessential amino acid residues from both termini. Of the four polypeptides produced by V8 protease or chymotrypsin, 54MM-2 was the shortest (120 residues; Mr = 13,584.8), but still contained the conserved amino acids suggested to associate with the signal peptide or the SRP RNA. 54MM-2 was cloned, expressed, purified to homogeneity, and was shown to bind human SRP RNA in the presence of protein SRP19, indicating that it was functional. Highly reproducible conditions for the crystallization of 54MM-2 were established. Examination of the crystals by X-ray diffraction showed an orthorhombic unit cell of dimensions a = 29.127 A, b = 63.693 A, and c = 129.601 A, in space group P2(1)2(1)2(1), with reflections extending to at least 2.0 A.  相似文献   

16.
17.
Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeast Schizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.  相似文献   

18.
A yeast two-hybrid screen was employed to identify human proteins that specifically bind the amino-terminal 400 amino acids of the retinoblastoma (Rb) protein. Two independent cDNAs resulting from this screen were found to encode the carboxy-terminal 137 amino acids of MCM7, a member of a family of proteins that comprise replication licensing factor. Full-length Rb and MCM7 form protein complexes in vitro, and the amino termini of two Rb-related proteins, p107 and p130, also bind MCM7. Protein complexes between Rb and MCM7 were also detected in anti-Rb immunoprecipitates prepared from human cells. The amino-termini of Rb and p130 strongly inhibited DNA replication in an MCM7-dependent fashion in a Xenopus in vitro DNA replication assay system. These data provide the first evidence that Rb and Rb-related proteins can directly regulate DNA replication and that components of licensing factor are targets of the products of tumor suppressor genes.  相似文献   

19.
Mammalian signal recognition particle (SRP), a complex of six polypeptides and one 7SL RNA molecule, is required for targeting nascent presecretory proteins to the endoplasmic reticulum (ER). Earlier work identified a Schizosaccharomyces pombe homolog of human SRP RNA and showed that it is a component of a particle similar in size and biochemical properties to mammalian SRP. The recent cloning of the gene encoding a fission yeast protein homologous to Srp54p has made possible further characterization of the subunit structure, subcellular distribution, and assembly of fission yeast SRP. S. pombe SRP RNA and Srp54p co-sediment on a sucrose velocity gradient and coimmunoprecipitate, indicating that they reside in the same complex. In vitro assays demonstrate that fission yeast Srp54p binds under stringent conditions to E. coli SRP RNA, which consists essentially of domain IV, but not to the full-length cognate RNA nor to an RNA in which domain III has been deleted in an effort to mirror the structure of bacterial homologs. Moreover, the association of S. pombe Srp54p with SRP RNA in vivo is disrupted by conditional mutations not only in domain IV, which contains its binding site, but in domains I and III, suggesting that the particle may assemble cooperatively. The growth defects conferred by mutations throughout SRP RNA can be suppressed by overexpression of Srp54p, and the degree to which growth is restored correlates inversely with the severity of the reduction in protein binding. Conditional mutations in SRP RNA also reduce its sedimentation with the ribosome/membrane pellet during cell fractionation. Finally, immunoprecipitation under native conditions of an SRP-enriched fraction from [35S]-labeled fission yeast cells suggests that five additional polypeptides are complexed with Srp54p; each of these proteins is similar in size to a constituent of mammalian SRP, implying that the subunit structure of this ribonucleoprotein is conserved over vast evolutionary distances.  相似文献   

20.
The signal recognition particle (SRP) is an evolutionarily conserved ribonucleoprotein (RNP) complex that functions in protein targeting to the endoplasmic reticulum (ER) membrane. Only two protein subunits of the SRP, Srp54p and Sec65p, and the RNA subunit, scR1, were previously known in the yeast Saccharomyces cerevisiae. Purification of yeast SRP by immunoaffinity chromatography revealed five additional proteins. Amino acid sequencing and cloning of the genes encoding four of these proteins demonstrated that the yeast SRP contains homologs (termed Srp14p, Srp68p and Srp72p) of the SRP14, SRP68 and SRP72 subunits found in mammalian SRP. The yeast SRP also contains a 21 kDa protein (termed Srp21p) that is not homologous to any protein in mammalian SRP. An additional 7 kDa protein may correspond to the mammalian SRP9. Disruption of any one of the four genes encoding the newly identified SRP proteins results in slow cell growth and inefficient protein translocation across the ER membrane. These phenotypes are indistinguishable from those resulting from the disruption of genes encoding SRP components identified previously. These data indicate that a lack of any of the analyzed SRP components results in loss of SRP function. ScR1 RNA and SRP proteins are at reduced levels in cells lacking any one of the newly identified proteins. In contrast, SRP components are present at near wild type levels and SRP subparticles are present in cells lacking either Srp54p or Sec65p. Thus Srp14p, Srp21p, Srp68p and Srp72p, but not Sec65p or Srp54p, are required for stable expression of the yeast SRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号