首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shewanella oneidensis MR-1 reduces selenite and tellurite preferentially under anaerobic conditions. The Se(0) and Te(0) deposits are located extracellularly and intracellularly, respectively. This difference in localization and the distinct effect of some inhibitors and electron acceptors on these reduction processes are taken as evidence of two independent pathways.  相似文献   

2.
Novel procedures and instrumentation are described for nuclear magnetic resonance (NMR) spectroscopy and imaging studies of live, in situ microbial films. A perfused NMR/optical microscope sample chamber containing a planar biofilm support was integrated into a recirculation/dilution flow loop growth reactor system and used to grow in situ Shewanella oneidensis strain MR-1 biofilms. Localized NMR techniques were developed and used to non-invasively monitor time-resolved metabolite concentrations and to image the biomass volume and distribution. As a first illustration of the feasibility of the methodology an initial 13C-labeled lactate metabolic pathway study was performed, yielding results consistent with existing genomic data for MR-1. These results represent progress toward our ultimate goal of correlating time- and depth-resolved metabolism and mass transport with gene expression in live in situ biofilms using combined NMR/optical microscopy techniques.  相似文献   

3.
The composition of extracellular polymeric substances (EPS) from Shewanella sp. HRCR-1 biofilms was investigated using infrared spectroscopy and proteomics to provide insight into potential ecophysiological functions and redox activity of the EPS. Both bound and loosely associated EPS were extracted from Shewanella sp. HRCR-1 biofilms prepared using a hollow-fibre membrane biofilm reactor. Fourier transform infrared spectra revealed the presence of proteins, polysaccharides, nucleic acids, membrane lipids and fatty acids in the EPS fractions. Using a global proteomic approach, a total of 58 extracellular and outer membrane proteins were identified in the EPS. These included homologues of multiple Shewanella oneidensis MR-1 proteins that potentially contribute to key physiological biofilm processes, such as biofilm-promoting protein BpfA, surface-associated serine protease, nucleotidases (CpdB and UshA), an extracellular lipase, and oligopeptidases (PtrB and a M13 family oligopeptidase lipoprotein). In addition, 20 redox proteins were found in extracted EPS. Among the detected redox proteins were the homologues of two S. oneidensis MR-1 c-type cytochromes, MtrC and OmcA, which have been implicated in extracellular electron transfer. Given their detection in the EPS of Shewanella sp. HRCR-1 biofilms, c-type cytochromes may contribute to the possible redox activity of the biofilm matrix and play important roles in extracellular electron transfer reactions.  相似文献   

4.
Cr(VI) was added to early- and mid-log-phase Shewanella oneidensis (S. oneidensis) MR-1 cultures to study the physiological state-dependent toxicity of Cr(VI). Cr(VI) reduction and culture growth were measured during and after Cr(VI) reduction. Inhibition of growth was observed when Cr(VI) was added to cultures of MR-1 growing aerobically or anaerobically with fumarate as the terminal electron acceptor. Under anaerobic conditions, there was immediate cessation of growth upon addition of Cr(VI) in early- and mid-log-phase cultures. However, once Cr(VI) was reduced below detection limits (0.002 mM), the cultures resumed growth with normal cell yield values observed. In contrast to anaerobic MR-1 cultures, addition of Cr(VI) to aerobically growing cultures resulted in a gradual decrease of the growth rate. In addition, under aerobic conditions, lower cell yields were also observed with Cr(VI)-treated cultures when compared to cultures that were not exposed to Cr(VI). Differences in response to Cr(VI) between aerobically and anaerobically growing cultures indicate that Cr(VI) toxicity in MR-1 is dependent on the physiological growth condition of the culture. Cr(VI) reduction has been previously studied in Shewanella spp., and it has been proposed that Shewanella spp. may be used in Cr(VI) bioremediation systems. Studies of Shewanella spp. provide valuable information on the microbial physiology of dissimilatory metal reducing bacteria; however, our study indicates that S. oneidensis MR-1 is highly susceptible to growth inhibition by Cr(VI) toxicity, even at low concentrations [0.015 mM Cr(VI)].  相似文献   

5.
Selenite and Tellurite Reduction by Shewanella oneidensis   总被引:1,自引:0,他引:1  
Shewanella oneidensis MR-1 reduces selenite and tellurite preferentially under anaerobic conditions. The Se(0) and Te(0) deposits are located extracellularly and intracellularly, respectively. This difference in localization and the distinct effect of some inhibitors and electron acceptors on these reduction processes are taken as evidence of two independent pathways.  相似文献   

6.
Shewanella oneidensis MR-1 has conventionally been considered unable to use glucose as a carbon substrate for growth. The genome sequence of S. oneidensis MR-1 however suggests the ability to use glucose. Here, we demonstrate that during initial glucose exposure, S. oneidensis MR-1 quickly and frequently gains the ability to utilize glucose as a sole carbon source, in contrast to wild-type S. oneidensis, which cannot immediately use glucose as a sole carbon substrate. High-performance liquid chromatography and (14)C glucose tracer studies confirm the disappearance in cultures and assimilation and respiration, respectively, of glucose. The relatively short time frame with which S. oneidensis MR-1 gained the ability to use glucose raises interesting ecological implications.  相似文献   

7.
Shewanella oneidensis MR-1 is a metal reducer that uses a large number of electron acceptors including thiosulfate, polysulfide and sulfite. The enzyme required for thiosulfate and polysulfide respiration has been recently identified, but the mechanisms of sulfite reduction remained unexplored. Analysis of MR-1 cultures grown anaerobically with sulfite suggested that the dissimilatory sulfite reductase catalyses six-electron reduction of sulfite to sulfide. Reduction of sulfite required menaquinones but was independent of the intermediate electron carrier CymA. Furthermore, the terminal sulfite reductase, SirA, was identified as an octahaem c cytochrome with an atypical haem binding site. The sulfite reductase of S. oneidensis MR-1 does not appear to be a sirohaem enzyme, but represents a new class of sulfite reductases. The gene that encodes SirA is located within a 10-gene locus that is predicted to encode a component of a specialized haem lyase, a menaquinone oxidase and copper transport proteins. This locus was identified in the genomes of several Shewanella species and appears to be linked to the ability of these organisms to reduce sulfite under anaerobic conditions.  相似文献   

8.
【目的】研究Shewanella oneidensis MR-1厌氧生物转化2,4-二硝基甲苯(2,4-DNT)的能力、转化过程和影响因素。【方法】以乳酸钠为电子供体, 2,4-DNT为电子受体, S. oneidensis MR-1为降解菌, 黄素为胞外电子载体, 设立四个不同的对照体系并监测各体系在转化过程中2,4-DNT及其产物的动态变化。同时研究不同2,4-DNT浓度下细胞的生长情况, 以及不同黄素浓度下2,4-DNT的降解情况。【结果】S. oneidensis MR-1菌能够高效还原转化2,4-DNT为4-氨基-2-硝基甲苯(4A2NT)和2-氨基-4-硝基甲苯(2A4NT), 并将其进一步还原为2,4-二氨基甲苯(2,4-DAT), 黄素能加速转化过程。【结论】S. oneidensis MR-1菌具备高效还原转化2,4-DNT的能力, 为实际环境中硝基苯污染的原位修复提供科学依据。  相似文献   

9.
Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.  相似文献   

10.
Selenium (Se) is an essential trace element for humans and animals. A hydroponic experiment was performed to study the effects of sulphur (S) on Se uptake, translocation, and assimilation in wheat (Triticum aestivum L.) seedlings. Sulphur starvation had a positive effect on selenate uptake and the form of Se supplied greatly influenced Se speciation in plants. Compared with the control plants, Se uptake by the S-starved plants was enhanced by 4.81-fold in the selenate treatment, and selenate was readily transported from roots to shoots. By contrast, S starvation had no significant effect on selenite uptake, and selenite taken up by roots was rapidly converted to organic forms and tended to accumulate in roots. X-ray absorption near edge spectroscopy (XANES) analysis showed that organic forms of selenium, including selenocystine, Se-methyl-selenocysteine (MeSeCys), and selenomethionine-Se-oxide, were dominant in the plants exposed to selenite and accounted for approximately 90 % of the total Se. Whereas selenate remained as the dominant species in the roots and shoots exposed to selenate, with little selenate converted to selenite and MeSeCys. Besides, sulphur starvation increased the proportion of inorganic Se species in the selenate-supplied plants, but had no significant effects on Se speciation in plants exposed to selenite. The present study provides important knowledge to understand the associated mechanism of Se uptake and metabolism in plants.  相似文献   

11.
Microbial transformations of selenite by methane-oxidizing bacteria   总被引:1,自引:0,他引:1  

Methane-oxidizing bacteria are well known for their role in the global methane cycle and their potential for microbial transformation of wide range of hydrocarbon and chlorinated hydrocarbon pollution. Recently, it has also emerged that methane-oxidizing bacteria interact with inorganic pollutants in the environment. Here, we report what we believe to be the first study of the interaction of pure strains of methane-oxidizing bacteria with selenite. Results indicate that the commonly used laboratory model strains of methane-oxidizing bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b, are both able to reduce the toxic selenite (SeO3 2?) but not selenate (SeO4 2?) to red spherical nanoparticulate elemental selenium (Se0), which was characterized via energy-dispersive X-ray spectroscopy (EDXS), X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). The cultures also produced volatile selenium-containing species, which suggests that both strains may have an additional activity that can transform either Se0 or selenite into volatile methylated forms of selenium. Transmission electron microscopy (TEM) measurements and experiments with the cell fractions cytoplasm, cell wall and cell membrane show that the nanoparticles are formed mainly on the cell wall. Collectively, these results are promising for the use of methane-oxidizing bacteria for bioremediation or suggest possible uses in the production of selenium nanoparticles for biotechnology.

  相似文献   

12.
The accumulated organic form of selenium previously detected by X-ray absorption near-edge structure (XANES) analyses in Cupriavidus metallidurans CH34 exposed to selenite or selenate was identified as seleno-l-methionine by coupling high-performance liquid chromatography to inductively coupled plasma-mass spectrometry.  相似文献   

13.
Schwalb C  Chapman SK  Reid GA 《Biochemistry》2003,42(31):9491-9497
The tetraheme c-type cytochrome, CymA, from Shewanella oneidensis MR-1 has previously been shown to be required for respiration with Fe(III), nitrate, and fumarate [Myers, C. R., and Myers, J. M. (1997) J. Bacteriol. 179, 1143-1152]. It is located in the cytoplasmic membrane where the bulk of the protein is exposed to the periplasm, enabling it to transfer electrons to a series of redox partners. We have expressed and purified a soluble derivative of CymA (CymA(sol)) that lacks the N-terminal membrane anchor. We show here, by direct measurements of electron transfer between the purified proteins, that CymA(sol) efficiently reduces S. oneidensis fumarate reductase. This indicates that no further proteins are required for electron transfer between the quinone pool and fumarate if we assume direct reduction of CymA by quinols. By expressing CymA(sol) in a mutant lacking CymA, we have shown that this soluble form of the protein can complement the defect in fumarate respiration. We also demonstrate that CymA is essential for growth with DMSO (dimethyl sulfoxide) and for reduction of nitrite, implicating CymA in at least five different electron transfer pathways in Shewanella.  相似文献   

14.
研究产电微生物胞外电子传递过程和机制,发现与产电效率相关的关键基因、通路和代谢物,是微生物燃料电池研究中的关键技术。为了发现在胞外电子传递过程中起到关键作用的基因以及通路,首先利用比较基因组学的方法,以模式微生物大肠杆菌和同属希瓦氏菌的其他菌株为参考,构建了Shewanella.onedensis MR-1的全基因组基因转录调控网络,大大扩展了目前已知的基因调控关系。然后以此网络为基础,结合基于蛋白质相互作用分析得到的胞外电子传递通路,构建了与胞外电子传递直接传递密切相关的细胞色素C编码基因及其相关调控基因构成的子网络,结合全基因组基因表达数据,研究了特异性条件下胞外电子传递的可能通路和基因调控过程。  相似文献   

15.
Microbial fuel cells (MFCs) traditionally operate at pH values between 6 and 8. However, the effect of pH on the growth and electron transfer abilities of Shewanella oneidensis MR-1 (wild-type) and DSP10 (spontaneous mutant), bacteria commonly used in MFCs, to electrodes has not been examined. Miniature MFCs using bare graphite felt electrodes and nanoporous polycarbonate membranes with MR-1 or DSP10 cultures generated >8W/m(3) and approximately 400muA between pH 6-7. The DSP10 strain significantly outperformed MR-1 at neutral pH but underperformed at pH 5. Higher concentrations of DSP10 were sustained at pH 7 relative to that of MR-1, whereas at pH 5 this trend was reversed indicating that cell count was not solely responsible for the observed differences in current. S. oneidensis MR-1 was determined to be more suitable than DSP10 for MFCs with elevated acidity levels. The concentration of riboflavin in the bacterial cultures was reduced significantly at pH 5 for DSP10, as determined by high performance liquid chromatography (HPLC) of the filter sterilized growth media. In addition, these results suggest that mediator biosynthesis and not solely bacterial concentration plays a significant role in current output from S. oneidensis containing MFCs.  相似文献   

16.
The Gram-negative bacterium Shewanella oneidensis MR-1 shows a remarkably versatile anaerobic respiratory metabolism. One of its hallmarks is its ability to grow and survive through the reduction of metallic compounds. Among other proteins, outer membrane decaheme cytochromes c OmcA and OmcB have been identified as key players in metal reduction. In fact, both of these cytochromes have been proposed to be terminal Fe(III) and Mn(IV) reductases, although their role in the reduction of other metals is less well understood. To obtain more insight into this, we constructed and analyzed omcA, omcB and omcA/omcB insertion mutants of S. oneidensis MR-1. Anaerobic growth on Fe(III), V(V), Se(VI) and U(VI) revealed a requirement for both OmcA and OmcB in Fe(III) reduction, a redundant function in V(V) reduction, and no apparent involvement in Se(VI) and U(VI) reduction. Growth of the omcB(-) mutant on Fe(III) was more affected than growth of the omcA(-) mutant, suggesting OmcB to be the principal Fe(III) reductase. This result was corroborated through the examination of whole cell kinetics of OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction, showing that OmcB is approximately 11.5 and approximately 6.3 times faster than OmcA at saturating and low nonsaturating concentrations of Fe(III)-nitrilotriacetic acid, respectively, whereas the omcA(-) omcB(-) double mutant was devoid of Fe(III)-nitrilotriacetic acid reduction activity. These experiments reveal, for the first time, that OmcA and OmcB are the sole terminal Fe(III) reductases present in S. oneidensis MR-1. Kinetic inhibition experiments further revealed vanadate (V(2)O(5)) to be a competitive and mixed-type inhibitor of OmcA and OmcB, respectively, showing similar affinities relative to Fe(III)-nitrilotriacetic acid. Neither sodium selenate nor uranyl acetate were found to inhibit OmcA- and OmcB-dependent Fe(III)-nitrilotriacetic acid reduction. Taken together with our growth experiments, this suggests that proteins other than OmcA and OmcB play key roles in anaerobic Se(VI) and U(VI) respiration.  相似文献   

17.
The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment.  相似文献   

18.
In this work, we investigated the anaerobic decolorization of methyl orange (MO), a typical azo dye, by Shewanella oneidensis MR-1, which can use various organic and inorganic substances as its electron acceptor in natural and engineered environments. S. oneidensis MR-1 was found to be able to obtain energy for growth through anaerobic respiration accompanied with dissimilatory azo-reduction of MO. Chemical analysis shows that MO reduction occurred via the cleavage of azo bond. Block of Mtr respiratory pathway, a transmembrane electron transport chain, resulted in a reduction of decolorization rate by 80%, compared to the wild type. Knockout of cymA resulted in a substantial loss of its azo-reduction ability, indicating that CymA is a key c-type cytochrome in the electron transfer chain to MO. Thus, the MtrA-MtrB-MtrC respiratory pathway is proposed to be mainly responsible for the anaerobic decolorization of azo dyes such as MO by S. oneidensis.  相似文献   

19.
Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se(0)). We have studied the kinetics of selenite (Se(IV)) and selenate (Se(VI)) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se(0) and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se(0). Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se(0) was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. Se(IV) was detected as a transient species in the first 12 h after selenate introduction, Se(0) also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号