首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
Fluoroquinolone resistance in Pseudomonas aeruginosa is mainly attributable to the constitutive expression of the xenobiotic efflux pump and mutation in DNA gyrase or topoisomerase IV. We constructed cells with a double-mutation in gyrA and mexR encoding DNA gyrase and repressor for the mexAB-oprM operon, respectively. The mutant showed 1,024 times higher fluoroquinolone resistance than cells lacking the MexAB-OprM. Cells with a single mutation in gyrA and producing a wild-type level of the MexAB-OprM efflux pump showed 128 times higher fluoroquinolone resistance than cells lacking the MexAB-OprM. In contrast, a single mutation in gyrA or mexR caused only 4 and 64 times higher resistance, respectively. These findings manifested the interplay between the MexAB-OprM efflux pump and the target mutation in fluoroquinolone resistance.  相似文献   

4.
5.
Subunit-swapping between Pseudomonas aeruginosa MexAB-OprM and MexEF-OprN efflux pumps has shown that OprM can interact with MexEF to produce a functional efflux pump, but that OprN cannot functionally interact with MexAB. Taking advantage of this subunit selectivity, we carried out experiments using chimeric proteins composed of OprM and OprN to determine which regions of OprM are necessary for functional interaction with MexAB. We constructed two types of chimeric proteins: one with the N-terminal half of OprM and the C-terminal half of OprN (OprMN), and the second with these halves reversed (OprNM). Introduction of either of the chimeric protein genes into a mutant expressing MexEF alone restored the functionality of the efflux pump. However, expression of OprMN or OprNM in the presence of MexAB did not restore the pump functionality, indicating that the both the N- and C-terminal halves of OprM are necessary for a functional interaction with MexAB.  相似文献   

6.
7.
The beta-lactamase inhibitor, sulbactam, was tested for beta-lactamase inhibitory activity in Pseudomonas aeruginosa cells producing various levels of both the MexAB-OprM efflux pump and beta-lactamase. We found that sulbactam lowered the MICs of cefoperazone and piperacillin by inhibiting the beta-lactamase 8-fold in the cell producing a constitutively high level of AmpC-type beta-lactamase and a wild-type level of MexAB-OprM pump compared with that without sulbactam. The MICs of cefoperazone and piperacillin in the cell producing a constitutively high level of both the efflux pump and beta-lactamase under the presence of sulbactam were 8 and 4 times, respectively, lower than that without sulbactam. The MICs of sulbactam in the cell producing a constitutively high and a wild-type level of the efflux pump were 16- and 8-fold higher, respectively, than that in the mutant lacking the efflux pump. We concluded that sulbactam exerts potent beta-lactamase inhibitory activity in the cell producing a high level of efflux pump, in spite of the fact that sulbactam serves as a substrate of the MexAB-OprM pump. Increasing amounts of sulbactam over the weight of beta-lactams further strengthen the effect of beta-lactam antibiotics.  相似文献   

8.
Understanding the molecular determinants for recognition, binding and transport of antibiotics by multidrug efflux systems is important for basic research and useful for the design of more effective antimicrobial compounds. Imipenem and meropenem are two carbapenems whose antibacterial activity is known to be poorly and strongly affected by MexAB-OprM, the major efflux pump transporter in Pseudomonas aeruginosa. However, not much is known regarding recognition and transport of these compounds by AcrAB-TolC, which is the MexAB-OprM homologue in Escherichia coli and by definition the paradigm model for structural studies on efflux pumps. Prompted by this motivation, we unveiled the molecular details of the interaction of imipenem and meropenem with the transporter AcrB by combining computer simulations with biophysical experiments. Regarding the interaction with the two main substrate binding regions of AcrB, the so-called access and deep binding pockets, molecular dynamics simulations revealed imipenem to be more mobile than meropenem in the former, while comparable mobilities were observed in the latter. This result is in line with isothermal titration calorimetry, differential scanning experiments, and binding free energy calculations, indicating a higher affinity for meropenem than imipenem at the deep binding pocket, while both sharing similar affinities at the access pocket. Our findings rationalize how different physico-chemical properties of compounds reflect on their interactions with AcrB. As such, they constitute precious information to be exploited for the rational design of antibiotics able to evade efflux pumps.  相似文献   

9.
Using a series of efflux mutants of Pseudomonas aeruginosa, the MexAB-OprM pump was identified as contributing to this organism's tolerance to the antimicrobial agent tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and alpha-terpineol. These data show that a multidrug efflux system of P. aeruginosa can extrude monoterpenes and related alcohols.  相似文献   

10.
Multidrug efflux pumps contribute to multiple antibiotic resistance in Pseudomonas aeruginosa. Pump expression usually has been quantified by Western blotting. Quantitative real-time polymerase chain reaction has been developed to measure mRNA expression for genes of interest. Whether this method correlates with pump protein quantities is unclear. We devised a real-time PCR for mRNA expression of MexAB-OprM and MexXY-OprM multidrug efflux pumps. In laboratory strains differing in MexB and MexY expression and in several clinical isolates, protein and mRNA expression correlated well. Quantitative real-time PCR should be a useful alternative in quantitating expression of multidrug efflux pumps by P. aeruginosa isolates in clinical laboratories.  相似文献   

11.
Pseudomonas aeruginosa is responsible for chronic and acute infections in humans. Chronic infections are associated with production of fimbriae and the formation of a biofilm. The two-component system Roc1 is named after its role in the regulation of cup genes, which encode components of a machinery allowing assembly of fimbriae. A non-characterized gene cluster, roc2, encodes components homologous to the Roc1 system. We show that cross-regulation occurs between the Roc1 and Roc2 signalling pathways. We demonstrate that the sensors RocS2 and RocS1 converge on the response regulator RocA1 to control cupC gene expression. This control is independent of the response regulator RocA2. Instead, we show that these sensors act via the RocA2 response regulator to repress the mexAB-oprM genes. These genes encode a multidrug efflux pump and are upregulated in the rocA2 mutant, which is less susceptible to antibiotics. It has been reported that in cystic fibrosis lungs, in which P. aeruginosa adopts the biofilm lifestyle, most isolates have an inactive MexAB-OprM pump. The concomitant RocS2-dependent upregulation of cupC genes (biofilm formation) and downregulation of mexAB-oprM genes (antibiotic resistance) is in agreement with this observation. It suggests that the Roc systems may sense the environment in the cystic fibrosis lung.  相似文献   

12.
13.
14.
The identification of a series of compounds that specifically inhibit efflux by the MexAB-OprM pump system in Pseudomonas aeruginosa is described. Synthesis and in vitro structure-activity relationships (SARs) are outlined. Early leads lacked activity in animal models, and efforts to improve solubility and reduce serum protein binding by the introduction of polar groups are discussed.  相似文献   

15.
Nehme D  Poole K 《Journal of bacteriology》2007,189(17):6118-6127
In an effort to identify key domains of the Pseudomonas aeruginosa MexAB-OprM drug efflux system involved in component interactions, extragenic suppressors of various inactivating mutations in individual pump constituents were isolated and studied. The multidrug hypersusceptibility of P. aeruginosa expressing MexB with a mutation in a region of the protein implicated in oligomerization (G220S) was suppressed by mutations in the alpha/beta domain of MexA. MexB(G220S) showed a reduced ability to bind MexA in vivo while representative MexA suppressors (V66M and V259F) restored the MexA-MexB interaction. Interestingly, these suppressors also restored resistance in P. aeruginosa expressing OprM proteins with mutations at the proximal (periplasmic) tip of OprM that is predicted to interact with MexB, suggesting that these suppressors generally overcame defects in MexA-MexB and MexB-OprM interaction. The multidrug hypersusceptibility arising from a mutation in the helical hairpin of MexA implicated in OprM interaction (V129M) was suppressed by mutations (T198I and F439I) in the periplasmic alpha-helical barrel of OprM. Again, the MexA mutation compromised an in vivo interaction with OprM that was restored by the T198I and F439I substitutions in OprM, consistent with the hairpin domain mediating MexA binding to this region of OprM. Interestingly, these OprM suppressor mutations restored multidrug resistance in P. aeruginosa expressing MexB(G220S). Finally, the oprM(T198I) suppressor mutation enhanced the yields of all three constituents of a MexA-MexB-OprM(T198I) pump as detected in whole-cell extracts. These data highlight the importance of MexA and interactions with this adapter in promoting MexAB-OprM pump assembly and in stabilizing the pump complex.  相似文献   

16.
Problems of low solubility, high serum protein binding, and lack of efficacy in vivo in first generation MexAB-OprM specific efflux pump inhibitors were addressed. Through the use of pharmacophore modelling, the key structural elements for pump inhibition were defined. Use of alternative scaffolds upon which the key elements were arrayed gave second generation leads with greatly improved physical properties and activity in the potentiation of antibacterial quinolones (levofloxacin and sitafloxacin) versus Pseudomonas aeruginosa in vivo.  相似文献   

17.
Pseudomonas aeruginosa encodes three types of xenobiotic efflux pumps, MexAB-OprM, MexCD-OprJ, and MexEF-OprN, which are regulated by the nalB, nfxB, and nfxC genes, respectively, and their high expression renders the cells resistant to multiple species of antibiotics. We evaluated the role of the outer membrane permeability barrier and the efflux pump in lowering the intracellular concentration of fluorescent probes. The wild-type, nalB, nfxB, and nfxC strains with an intact outer membrane showed equally high capability in draining out intracellular fluorescent dye, 2-(4-dimethylaminostyryl)-1-ethylpyridinium and ethidium bromide. When the outer membrane barrier was dismantled by the EDTA treatment, wild-type, nfxC, nfxB, and nalB strains showed significantly different levels of dye accumulation. The polymyxin B-treated cells showed an even more pronounced difference in dye accumulation among the nfxC, nfxB, and nalB mutants. We concluded from these results that the xenobiotic extrusion pumps interplay with the outer membrane permeability barrier in lowering the intracellular substrate concentration. Among three extrusion pumps in P. aeruginosa, MexAB-OprM was the most efficient, followed by MexCD-OprJ and MexEF-OprN pumps for the fluorescent dye extrusion.  相似文献   

18.
目的研究临床多重耐药铜绿假单胞菌群体感应(QS)系统与主动外排泵MexAB-OprM系统基因表达水平与抗生素耐药关系。方法收集苏州市立医院和上海市江湾医院2011年2月至6月间临床标本中分离的铜绿假单胞菌,定量分析细菌生物被膜形成能力;MIC法检测细菌抗生素耐药性,用多重聚合酶链反应(PCR)扩增群体感应系统lasI、lasR及主动外排泵系统mexA基因,实时定量逆转录RT-PCR检测lasI、lasR和mexA基因的相对表达量。结果临床样本分离出84株铜绿假单胞菌,其中产生物被膜菌58株,占比69%;多重耐药菌共24株,占比28.6%;多重耐药菌株中产生物被膜有11株,占45.8%;多重耐药菌中mexA基因表达上调有18株,占75%;lasI基因表达上调有8株,占33.3%。结论多重耐药菌株的生物被膜形成率显著低于非多重耐药组,多重耐药铜绿假单胞菌的主动外排泵MexAB-OprM系统基因表达出现显著上调,生物被膜菌的lasI基因表达显著上调而lasR基因的表达无明显变化。  相似文献   

19.
The amount of the subunit proteins of the MexAB-OprM efflux pump in Pseudomonas aeruginosa was quantified by the immunoblotting method. A single cell of the wild-type strain contained about 2500, 1000, and 1200 copies of MexA, MexB, and OprM, respectively, and their stoichiometry therefore was 2:1:1. The mexR mutant produced an eightfold higher level of these proteins than did wild-type cells. Assuming that MexB and OprM exist as a trimer in a pump assembly, the total number of MexAB-OprM per wild-type cell was calculated to be about 400 assemblies. The substrate efflux rate of MexAB-OprM was calculated from the fluorescent intensity of ethidium in intact cells that a single cell extruded ethidium at a maximum of about 3 x 10(-19) mol s(-1) and, therefore, the turnover rate of a single pump unit was predicted to be about 500 s(-1).  相似文献   

20.
In gram-negative bacteria, transporters belonging to the RND family are the transporters most relevant for resistance to antimicrobial compounds. In Pseudomonas aeruginosa, a clinically important pathogen, the RND-type pump MexAB-OprM has been recognized as one of the major multidrug efflux systems. Here, homologues of MexAB-OprM in the plant pathogens Pseudomonas syringae pv. phaseolicola 1448A, P. syringae pv. syringae B728a, and P. syringae pv. tomato DC3000 were identified, and mexAB-oprM-deficient mutants were generated. Determination of MICs revealed that mutation of MexAB-OprM dramatically reduced the tolerance to a broad range of antimicrobials. Moreover, the ability of the mexAB-oprM-deficient mutants to multiply in planta was reduced. RNA dot blot hybridization revealed growth-dependent regulation of the mexAB-oprM operon in P. syringae; the expression of this operon was maximal in early exponential phase and decreased gradually during further growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号