首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel mutation named ru2d/Hps5ru2‐d, characterized by light‐colored coats and ruby‐eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr‐related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2d allele affects pheomelanin synthesis in recessive yellow (e/Mc1re) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2d allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5‐week‐old mice from F2 generation between C57BL/10JHir (B10)‐co‐isogenic ruby‐eye 2d and B10‐congenic recessive yellow or agouti. Eumelanin content was decreased in ruby‐eye 2d and ruby‐eye 2d agouti mice, whereas pheomelanin content in ruby‐eye 2d recessive yellow and ruby‐eye 2d agouti mice did not differ from the corresponding Ru2d/‐ mice, suggesting that the ru2d allele inhibits eumelanin but not pheomelanin synthesis.  相似文献   

2.
The tails of agouti C3H/HeJmsHir mice are completely pigmented, whereas the tails of black C57BL/10JHir animals possess unpigmented tips. Genetic analysis indicates that white tail-tipping is due to an autosomal recessive gene, with incomplete penetrance, that segregates independently from the gene for agouti with a maternal influence in the F1 generation. To analyze the influence of specific coat-color genes on the expression of tail-spotting in mice, five congenic lines of C57BL/10JHir with different coat colors were prepared. No influence was observed on the occurrence of tail-spotting in agouti (A/A) or dilute (d/d) mice or in F1 mice from crosses between black and albino (c/c), or in F1 mice from crosses between black and pink-eyed dilution (p/p). However, the frequency of tail-spotting was dramatically decreased in brown (b/b) mice. These results suggest that the mutant allele (b) at the brown locus is involved in determining the extent of pigmented areas in the tail tips of mice through an interaction with the tail-spotting gene.  相似文献   

3.
Melanocytes produce two chemically distinct types of melanin pigments, eumelanin and pheomelanin. These pigments can be quantitatively analyzed by acidic permanganate oxidation or reductive hydrolysis with hydriodic acid to form pyrrole-2,3,5-tricarboxylic acid or aminohydroxyphenylalanine, respectively. About 30 coat color genes in mice have been cloned, and functions of many of those genes have been elucidated. However, little is known about the interacting functions of these loci. In this study, we used congenic mice to eliminate genetic variability, and analyzed eumelanin and pheomelanin contents of hairs from mice mutant at one or more of the major pigment loci, i.e., the albino (C) locus that encodes tyrosinase, the slaty (Slt) locus that encodes tyrosinase-related protein 2 (TRP2 also known as dopachrome tautomerase, DCT), the brown (B) locus that encodes TRP1, the silver (Si) locus that encodes a melanosomal silver protein, the agouti (A) locus that encodes agouti signaling protein (ASP), the extension (E) locus that encodes melanocortin-1 receptor, and the mahogany (Mg) locus that encodes attractin. We also measured total melanin contents after solubilization of hairs in hot Soluene-350 plus water. Hairs were shaved from 2-3-month-old congenic C57BL/6J mice. The chinchilla (c(ch)) allele is known to encode tyrosinase, whose activity is about one third that of wild type (C). Phenotypes of chinchilla (c(ch)/c(ch)) mice that are wild type or mutant at the brown and/or slaty, loci indicate that functioning TRP2 and TRP1 are necessary, in addition to high levels of tyrosinase, for a full production of eumelanin. The chinchilla allele was found to reduce the amount of pheomelanin in lethal yellow and recessive yellow mice to less than one fifth of that in congenic yellow mice that were wild type at the albino locus. This indicates that reduction in tyrosinase activity affects pheomelanogenesis more profoundly compared with eumelanogenesis. Hairs homozygous for mutation at the slaty locus contain 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-poor melanin, and this chemical phenotype was retained in hairs that were mutant at both the brown locus and the slaty locus. Hair from mice mutant at the brown locus, but not at the slaty locus, do not contain DHICA-poor melanin. This indicates that the proportion of DHICA in eumelanin is determined by TRP2, but not by TRP1. Mutation at the slaty locus (Slt(lt)) was found to have no effect on pheomelanogenesis, supporting a role of TRP2 only in eumelanogenesis. The mutation at silver (si) locus showed an effect similar to brown, a partial suppression of eumelanogenesis. The mutation at mahogany (mg) locus partially suppressed the effect of lethal yellow (Ay) on pheomelanogenesis, supporting a role of mahogany in interfering with agouti signaling. These results show that combination of double mutation study of congenic mice with chemical analysis of melanins is useful in evaluating the interaction of pigment gene functions.  相似文献   

4.
Changes in the proliferation and differentiation of epidermal melanocytes derived from newborn mice wild-type at the pink-eyed dilution (p) locus (P/P) and from congenic mice mutant at that locus (p/p) were investigated in serum-free primary culture, with or without the addition of L-Tyr. Incubation with added L-Tyr inhibited the proliferation of P/P melanocytes in a concentration-dependent manner and inhibition was gradually augmented as the donor mice aged. In contrast, L-Tyr stimulated the proliferation of p/p melanoblasts-melanocytes derived from 0.5-day-old mice, but inhibited their proliferation when derived from 3.5- or 7.5-day-old mice. L-Tyr stimulated the differentiation of P/P melanocytes. However, almost all cells were undifferentiated melanoblasts in control cultures derived from 0.5-, 3.5- and 7.5-day-old p/p mice, but L-Tyr induced their differentiation as the age of the donor mice advanced. The content of the eumelanin marker, pyrrole-2,3,5-tricarboxylic acid as well as the pheomelanin marker, 4-amino-3-hydroxyphenylalanine in p/p melanocytes was greatly reduced compared with P/P melanocytes. However, the contents of eumelanin and its precursor, 5,6-dihydroxyindole-2-carboxylic acid, as well as the contents of pheomelanin and its precursor, 5-S-cysteinyldopa in culture media from p/p melanocytes were similar to those of P/P melanocytes at all ages tested. L-Tyr increased the content of eumelanin and pheomelanin two- to threefold in cultured cells and media derived from 0.5-, 3.5- and 7.5-day-old mice. These results suggest that the proliferation of p/p melanoblasts-melanocytes is stimulated by L-Tyr, and that the differentiation of melanocytes is induced by L-Tyr as the age of the donor mice advanced, although eumelanin and pheomelanin fail to accumulate in p/p melanocytes and are released from them at all ages of skin development.  相似文献   

5.
The epidermal cell suspensions of the neonatal dorsal skin derived from wild type mouse at the pink-eyed dilution (p) locus (black, C57BL/10JHir-P/P) and their congenic mutant mouse (pink-eyed dilution, C57BL/10JHir-p/p) were cultured with a serum-free melanocyte growth medium supplemented with additional L-tyrosine (Tyr) from initiation of the primary culture. L-Tyr inhibited the proliferation of P/Pmelanocytes in a dose-dependent manner, whereas L-Tyr stimulated the proliferation of p/p melanoblasts and melanocytes regardless of dose. On the other hand, L-Tyr stimulated (P/P) or induced (p/p) the differentiation of epidermal melanocytes in a dose-dependent manner. In both P/P and p/p melanoblasts and melanocytes cultured with 2.0 mM L-Tyr for 14 days, slight increases in contents of eumelanin marker, pyrrole-2,3,5-tricarboxylic acid (PTCA) and pheomelanin marker, aminohydroxyphenylalanine (AHP) were observed. The average number of total melanosomes (stages I, II, III, and IV) per P/P melanocyte was not changed by L-Tyr treatment, but the proportion of stage IV melanosomes in the total melanosomes was increased. On the contrary, in p/p melanoblasts and melanocytes L-Tyr increased dramatically the number of stage II, III, and IV melanosomes as well as the proportion of stage III melanosomes. Contents of PTCA and eumelanin precursor, 5,6-dihydroxyindole-2-carboxylic acid (DHICA) of cultured media in p/p melanocytes were much more greatly increased than in P/P melanocytes. However, contents of AHP and pheomelanin precursor, 5-S-cysteinyldopa (5-S-CD) of cultured media in p/p melanocytes were increased in a similar tendency to P/Pmelanocytes. These results suggest that p/p melanocytes in the primary culture are induced to synthesize eumelanin by excess L-Tyr, but difficult to accumulate them in melanosomes.  相似文献   

6.
Fox colors in relation to colors in mice and sheep   总被引:4,自引:0,他引:4  
Color inheritance in foxes is explained in terms of homology between color loci in foxes, mice, and sheep. The hypothesis presented suggests that the loci A (agouti), B (black/chocolate brown pigment) and E (extension of eumelanin vs. phaeomelanin) all occur in foxes, both the red fox, Vulpes vulpes, and the arctic fox, Alopex lagopus. Two alleles are postulated at each locus in each species. At the A locus, the (top) dominant allele in the red fox, Ar, produces red color and the corresponding allele in the arctic fox, Aw, produces the winter-white color. The bottom recessive allele in both species is a, which results in the black color of the silver fox and a rare black color in the Icelandic arctic fox when homozygous. The B alleles are assumed to be similar in both species: B, dominant, producing black eumelanin, and b, recessive, producing chocolate brown eumelanin when homozygous. The recessive E allele at the E locus in homozygous form has no effect on the phenotype determined by alleles at the A locus, while Ed, the dominant allele is epistatic to the A alleles and results in Alaska black in the red fox and the dark phase in the arctic fox. Genetic formulae of various color forms of red and arctic fox and their hybrids are presented.  相似文献   

7.
The murine recessive yellow (Mc1r(e)) is a loss-of-function mutation in the receptor for alpha-melanocyte-stimulating hormone, melanocortin receptor 1 (Mc1r) and produces yellow coats by inducing pheomelanin synthesis in hair follicular melanocytes. However, it is not known whether the Mc1r(e) mutation affects the proliferation and differentiation of melanocytes. In this study, the proliferation and differentiation of recessive yellow epidermal melanocytes cultured in dibutyryl cyclic AMP-supplemented serum-free medium were investigated in detail. The melanocytes produced mainly eumelanin in this culture system. The proliferation of recessive yellow melanocytes was decreased compared with that of wild-type at the e-locus, black melanocytes. The differentiation of melanocytes was also delayed and inhibited in recessive yellow mice. Tyrosinase (TYR) activity and TYR-related protein 1 (TRP1) and TRP2 (dopachrome tautomerase, DCT) expressions were decreased and, in addition, the maturation of stage IV melanosomes was inhibited. Excess l-tyrosine (l-Tyr) added to the culture media rescued the reduced activity of proliferation of melanocytes. l-Tyr also stimulated TYR activity and TRP1 and TRP2 expressions as well as the maturation of stage IV melanosomes and pigmentation. These results suggest that the Mc1r(e) mutation affects the proliferation and differentiation of melanocytes and l-Tyr rescues the reduced proliferative and differentiative activities by stimulating TYR activity and TRP1 and TRP2 expressions as well as melanosome maturation.  相似文献   

8.
The wild‐type agouti‐banding pattern for hair is well characterized in lower mammals such as mice. The switch between eumelanin and pheomelanin in bands in the hair results from the interaction of α‐melanocyte stimulating hormone and agouti signal protein through the melanocortin 1 receptor on melanocytes. However, such banding patterns have not been described to date in higher mammals. We now report such ‘agouti’‐banding patterns that occur in several subspecies of baboons, and characterize those hairs using chemical and immunohistochemical methods. Hair and skin samples were obtained from the dorsa of adult male baboons of different subspecies (Papio cynocephalus hamadryas (PCH) and Papio cynocephalus anubis (PCA)). The hairs were excised with scissors into the gray and the white bands of the PCH subspecies and into the black and the yellow bands of the PCA subspecies, and were analyzed for total melanin, eumelanin, and pheomelanin by spectrophotometric and chemical methods. Hairs in the PCA subspecies oscillate between a eumelanic band (with high melanin content) and a pheomelanic band, while hairs in the PCH subspecies oscillate between a eumelanic band (with low melanin content) and a non‐pigmented band. Those chemical data are consistent with the histological appearance of the hair bulbs stained by the Fontana‐Masson technique. The difference in the melanin content between PCH and PCA subspecies is most likely related to tyrosinase levels, as suggested by the presence of unpigmented muzzle in the PCH subspecies compared with the black muzzle in the PCA subspecies.  相似文献   

9.
The alleles at the agouti locus in mice determine whether eumelanin or pheomelanin is synthesized by the follicular melanocytes. Previous studies have indicated the dermis as the site of action of the agouti alleles, while implying that the epidermis plays only a passive role. Using methods of dermal-epidermal recombinations of embryonic yellow (Ay) and nonagouti (a) mouse skin, the study reported here indicates that the epidermis, as well as the dermis, plays a role in the action of the agouti alleles. When yellow dermis is recombined with nonagouti epidermis, the hairs produced contain only pheomelanin, thus substantiating the role of the dermis. However, the reciprocal combination of nonagouti dermis and yellow epidermis also produces hairs containing pheomelanin, indicating a more important role for the epidermis. The role of the dermal-epidermal interactions in the action of the alleles at the agouti locus is discussed.  相似文献   

10.
11.
As an incidental finding in a study of mammary tumorigenesis, two lines of genetically engineered mice were observed to develop pigmentation changes of the fur. Mice with targeted mutations of the Rb1 (Rb) and Cdkn1b (p27kip1) genes were crossed from C57BL/6 (black coat color; eumelanin) and 129Sv (wild-type agouti coat color) backgrounds, respectively, to one with a dominant yellow coat color (phaeomelanin) carrying a transgene for Agouti under a keratinocyte specific promoter. Both Rb+/- and p27-/- mice developed pituitary tumors of the pars intermedia that were associated with a switch to black (eumelanic) fur but were not observed in sibling Rb+/+ and p27+/+ mice. This phenomenon was observed first in the vibrissae and, subsequently one to two weeks later, as periorbital and dorsal patches, and was associated with pituitary lesions larger than four millimeters in the longest dimension. In Rb+/- mice, pigmentation change preceded a moribund state attributable to the tumors by two to four weeks, whereas in p27-/- mice, the pigmentation alteration was earlier, more gradual, and prolonged. The switch from phaeomelanin to eumelanin in the fur is most likely due to out-competition of the agouti gene product by alpha-melanocyte-stimulating hormone from the pituitary tumors, an effect masked in black or agouti mice.  相似文献   

12.
The effects of selection of agouti rats (with genotype AAHH) on the tame and aggressive behavior and dietary methyl given to females from the eighth day of pregnancy to the fifth day after the birth of the offspring on the intensity of the agouti coat color in the offspring have been studied. The morphometric parameters of hair determining the darkness of the agouti color (the total length of guard hairs, the lengths of their eumelanin end and pheomelanin band, the ratio between the lengths of the eumelanin and pheomelanin portions of the hair, the total length of the awn hairs, and the relative length of their widened “lanceolate” upper end) have been compared. It has been found that selection of agouti rats for aggressive behavior is accompanied by darkening of the coat color compared to tame rats due to an increase in the ratio of the length of the black eumelanin end of the guard hairs to the length of the yellow pheomelanin band. Methyl-containing additives to the diet of females affect the intensity of the agouti coat color in the offsprings with both types of behavior, but to different extents. Aggressive offspring is more sensitive to the mother’s methyl-containing diet: the percentage of animals that are darker than control rats is higher among aggressive animals than among tame ones due to a greater increase in the ratio between dark and light portions of hairs. The possible mechanisms of differences in the phenotypic modifications of coat color in control and experimental agouti rats with different types of behavior are discussed.  相似文献   

13.
In the mouse, alleles at the agouti locus determine eumelanin or pheomelanin synthesis by the follicular melanocytes. Previous studies have identified the dermis as the site of action of these alleles. However, a recent investigation utilizing the yellow (Ay) allele suggested a possible role of the epidermis in the expression of agouti locus alleles. Using dermal-epidermal recombinations of embryonic skin of various agouti genotypes, the present investigation supports the role of both the dermis and epidermis. If nonagouti (aa) dermis is recombined with agouti (AA) epidermis, the resulting hairs are pigmented in the nonagouti pattern. The reciprocal recombination of agouti dermis and nonagouti epidermis results in hairs pigmented in the agouti pattern. The recombinations of yellow (Aya) dermis and agouti or extreme nonagouti (aeae) epidermis result in hairs completely pigmented in the yellow pattern (pheomelanin). However, when extreme nonagouti or agouti dermis is recombined with yellow epidermis, the resulting hairs are completely pigmented with pheomelanin. Similar results occur in recombinations of “young” yellow epidermis (13 days) and “old” dermis (17 days) even though dermal papillae are present. The role of dermal-epidermal interactions in the expression of agouti alleles as well as possible explanations for the unique action of the yellow allele are discussed.  相似文献   

14.
We have studied the structural alteration of melanosomes in the melanocytes of agouti mice whose genetic characteristic is to produce eumelanin and phaeomelanin alternately in a single hair bulb. Melanocytes of hair bulbs from 1 to 2 day old mice of the black phase were observed to contain rod-shaped melanosomes of the eumelanin type (eumelanosome). In the melanocytes of the hair bulbs from 4 to 6-day old skin, which exclusively contain phaeomelanin, spherical melanosomes (phaeomelanosomes) were seen. On the other hand, the mice of the transitional phase from black to yellow possessed melanocytes that contained both eumelanosomes and phaeomelanosomes within a single cell. This result indicates that the shift from the eumelanin formation to the phaeomelanin formation or vice versa in agouti hair occurs within a single melanocyte.We observed multivesicular bodies in both the agouti melanocytes of the yellow phase and the genotypically yellow melanocytes. These bodies are considered to be the precursor of the phaeomelanin-containing melanosome. They are sometimes observed to have continuity with E. R. suggesting that the melanosomes are derived from E. R. in the phaeomelanin-forming melanocytes.  相似文献   

15.
J. F. Leslie  K. K. Klein 《Genetics》1996,144(2):557-567
The murine agouti locus regulates a switch in pigment synthesis between eumelanin (black/brown pigment) and phaeomelanin (yellow/red pigment) by hair bulb melanocytes. We recently described a spontaneous mutation, hypervariable yellow (A(hvy)) and demonstrated that A(hvy) is responsible for the largest range of phenotypes yet identified at the agouti locus, producing mice that are obese with yellow coats to mice that are of normal weight with black coats. Here, we show that agouti expression is altered both temporally and spatially in A(hvy) mutants. Agouti expression levels are positively correlated with the degree of yellow pigmentation in individual A(hvy) mice, consistent with results from other dominant yellow agouti mutations. Sequencing of 5' RACE and genomic PCR products revealed that A(hvy) resulted from the integration of an intracisternal A particle (IAP) in an antisense orientation within the 5' untranslated agouti exon 1C. This retrovirus-like element is responsible for deregulating agouti expression in A(hvy) mice; agouti expression is correlated with the methylation state of CpG residues in the IAP long terminal repeat as well as in host genomic DNA. In addition, the data suggest that the variable phenotype of A(hvy) offspring is influenced in part by the phenotype of their A(hvy) female parent.  相似文献   

16.
Switching between production of eumelanin or pheomelanin in follicular melanocytes is responsible for hair color in mammals; in mice, this switch is controlled by the agouti locus, which encodes agouti signal protein (ASP) through the action of melanocortin receptor 1. To study expression and processing patterns of ASP in the skin and its regulation of pigment production in hair follicles, we have generated a rabbit antibody (termed alphaPEP16) against a synthetic peptide that corresponds to the carboxyl terminus of ASP. The specificity of that antibody was measured by ELISA and was confirmed by Western blot analysis. Using immunohistochemistry, we characterized the expression of ASP in the skin of newborn mice at 3, 6, and 9 days postnatally. Expression in nonagouti (a/a) black mouse skin was negative at all times examined, as expected, and high expression of ASP was observed in 6 day newborn agouti (A/+) and in 6 and 9 day newborn lethal yellow (A(y)/a) mouse skin. In lethal yellow (pheomelanogenic) mice, ASP expression increased day by day as the hair color became more yellow. These expression patterns suggest that ASP is delivered quickly and efficiently to melanocytes and to hair matrix cells in the hair bulbs where it regulates melanin production.  相似文献   

17.
Agouti: from mouse to man, from skin to fat   总被引:25,自引:0,他引:25  
The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. Its effect on pigmentation is achieved by antagonizing the binding of alpha-melanocyte stimulating hormone (alpha-MSH) to melanocortin 1 receptor (Mc1r), switching melanin synthesis from eumelanin (black/brown) to phaeomelanin (red/yellow). Dominant mutations in the non-coding region of mouse agouti cause yellow coat colour and ectopic expression also results in obesity, type 11 diabetes, increased somatic growth and tumourigenesis. At least some of these pleiotropic effects can be explained by antagonism of other members of the melanocortin receptor family by agouti protein. The yellow coat colour is the result of agouti chronically antagonizing the binding of alpha-MSH to Mc1r and the obese phenotype results from agouti protein antagonizing the binding of alpha-MSH to Mc3r and/or Mc4r. Despite the existence of a highly homologous agouti protein in humans, agouti signal protein (ASIP), its role has yet to be defined. However it is known that human ASIP is expressed at highest levels in adipose tissue where it may antagonize one of the melanocortin receptors. The conserved nature of the agouti protein combined with the diverse phenotypic effects of agouti mutations in mouse and the different expression patterns of human and mouse agouti, suggest ASIP may play a role in human energy homeostasis and possibly human pigmentation.  相似文献   

18.
The wild-type agouti-banding pattern for hair is well characterized in lower mammals such as mice. The switch between eumelanin and pheomelanin in bands in the hair results from the interaction of alpha-melanocyte stimulating hormone and agouti signal protein through the melanocortin 1 receptor on melanocytes. However, such banding patterns have not been described to date in higher mammals. We now report such 'agouti'-banding patterns that occur in several subspecies of baboons, and characterize those hairs using chemical and immunohistochemical methods. Hair and skin samples were obtained from the dorsa of adult male baboons of different subspecies (Papio cynocephalus hamadryas (PCH) and Papio cynocephalus anubis (PCA)). The hairs were excised with scissors into the gray and the white bands of the PCH subspecies and into the black and the yellow bands of the PCA subspecies, and were analyzed for total melanin, eumelanin, and pheomelanin by spectrophotometric and chemical methods. Hairs in the PCA subspecies oscillate between a eumelanic band (with high melanin content) and a pheomelanic band, while hairs in the PCH subspecies oscillate between a eumelanic band (with low melanin content) and a non-pigmented band. Those chemical data are consistent with the histological appearance of the hair bulbs stained by the Fontana-Masson technique. The difference in the melanin content between PCH and PCA subspecies is most likely related to tyrosinase levels, as suggested by the presence of unpigmented muzzle in the PCH subspecies compared with the black muzzle in the PCA subspecies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号