首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The common pattern of replicated evolution of a consistent shape-environment relationship might reflect selection acting in similar ways within each environment, but divergently among environments. However, phenotypic evolution depends on the availability of additive genetic variation as well as on the direction of selection, implicating a bias in the distribution of genetic variance as a potential contributor to replicated evolution. Allometry, the relationship between shape and size, is a potential source of genetic bias that is poorly understood. The threespine stickleback, Gasterosteus aculeatus, provides an ideal system for exploring the contribution of genetic variance in body shape allometry to evolutionary patterns. The stickleback system comprises marine populations that exhibit limited phenotypic variation, and young freshwater populations which, following independent colonization events, have often evolved similar phenotypes in similar environments. In particular, stickleback diversification has involved changes in both total body size and relative size of body regions (i.e., shape). In a laboratory-reared cohort derived from an oceanic Alaskan population that is phenotypically and genetically representative of the ancestor of the diverse freshwater populations in this region, we determined the phenotypic static allometry, and estimated the additive genetic variation about these population-level allometric functions. We detected significant allometry, with larger fish having relatively smaller heads, a longer base to their second dorsal fin, and longer, shallower caudal peduncles. There was additive genetic variance in body size and in size-independent body shape (i.e., allometric elevation), but typically not in allometric slopes. These results suggest that the parallel evolution of body shape in threespine stickleback is not likely to have been a correlated response to selection on body size, or vice versa. Although allometry is common in fishes, this study highlights the need for additional data on genetic variation in allometric functions to determine how allometry evolves and how it influences phenotypic evolution.  相似文献   

2.
The threespine stickleback (Gasterosteus aculeatus) has emerged as an important model organism in evolutionary ecology, largely due to the repeated, parallel evolution of divergent morphotypes found in populations having colonized freshwater habitats. However, morphological divergence following colonization is not a universal phenomenon. We explore this in a large-scale estuarine ecosystem inhabited by two parapatric stickleback demes, each physiologically adapted to divergent osmoregulatory environments (fresh vs. saline waters). Using geometric morphometric analyses of wild-caught individuals, we detected significant differences between demes, in addition to sexual dimorphism, in body shape. However, rearing full-sib families from each deme under controlled, reciprocal salinity conditions revealed no differences between genotypes and highly significant environmental effects. It is also noteworthy that fish from both demes were fully plated, whether found in the wild or reared under reciprocal salinity conditions. Although we found significant heritability for body shape, we also noted significant direct environmental effects for many latent shape variables. Moreover, we found little evidence for diversifying selection acting on body size and shape (Q(ST) ). Nevertheless, uniform compressive variation did exceed neutral expectations, yet despite evidence of both allometry and genetic correlation with body length, we detected no correlated signatures of selection. Taken together, these results suggest that much of the morphological divergence observed in this system is the result of plastic responses to environmental variation rather than adaptive differentiation.  相似文献   

3.
Classical Darwinian adaptation to a change in environment can ensue when selection favours beneficial genetic variation. How plastic trait responses to new conditions affect this process depends on how plasticity reveals to selection the influence of genotype on phenotype. Genetic accommodation theory predicts that evolutionary rate may sharply increase when a new environment induces plastic responses and selects on sufficient genetic variation in those responses to produce an immediate evolutionary response, but natural examples are rare. In Iceland, marine threespine stickleback that have colonized freshwater habitats have evolved more rapid individual growth. Heritable variation in growth is greater for marine full-siblings reared at low versus high salinity, and genetic variation exists in plastic growth responses to low salinity. In fish from recently founded freshwater populations reared at low salinity, the plastic response was strongly correlated with growth. Plasticity and growth were not correlated in full-siblings reared at high salinity nor in marine fish at either salinity. In well-adapted lake populations, rapid growth evolved jointly with stronger plastic responses to low salinity and the persistence of strong plastic responses indicates that growth is not genetically assimilated. Thus, beneficial plastic growth responses to low salinity have both guided and evolved along with rapid growth as stickleback adapted to freshwater.  相似文献   

4.
Patterns of genetic variation and covariation can influence the rate and direction of phenotypic evolution. We explored the possibility that the parallel morphological evolution seen in threespine stickleback (Gasterosteus aculeatus) populations colonizing freshwater environments is facilitated by patterns of genetic variation and covariation in the ancestral (marine) population. We estimated the genetic (G) and phenotypic (P) covariance matrices and directions of maximum additive genetic (g(max) ) and phenotypic (p(max) ) covariances of body shape and armour traits. Our results suggest a role for the ancestral G in explaining parallel morphological evolution in freshwater populations. We also found evidence of genetic constraints owing to the lack of variance in the ancestral G. Furthermore, strong genetic covariances and correlations among traits revealed that selective factors responsible for threespine stickleback body shape and armour divergence may be difficult to disentangle. The directions of g(max) and p(max) were correlated, but the correlations were not high enough to imply that phenotypic patterns of trait variation and covariation within populations are very informative of underlying genetic patterns.  相似文献   

5.
Population genomic studies are beginning to provide a more comprehensive view of dynamic genome-scale processes in evolution. Patterns of genomic architecture, such as genomic islands of increased divergence, may be important for adaptive population differentiation and speciation. We used next-generation sequencing data to examine the patterns of local and long-distance linkage disequilibrium (LD) across oceanic and freshwater populations of threespine stickleback, a useful model for studies of evolution and speciation. We looked for associations between LD and signatures of divergent selection, and assessed the role of recombination rate variation in generating LD patterns. As predicted under the traditional biogeographic model of unidirectional gene flow from ancestral oceanic to derived freshwater stickleback populations, we found extensive local and long-distance LD in fresh water. Surprisingly, oceanic populations showed similar patterns of elevated LD, notably between large genomic regions previously implicated in adaptation to fresh water. These results support an alternative biogeographic model for the stickleback radiation, one of a metapopulation with appreciable bi-directional gene flow combined with strong divergent selection between oceanic and freshwater populations. As predicted by theory, these processes can maintain LD within and among genomic islands of divergence. These findings suggest that the genomic architecture in oceanic stickleback populations may provide a mechanism for the rapid re-assembly and evolution of multi-locus genotypes in newly colonized freshwater habitats, and may help explain genetic mapping of parallel phenotypic variation to similar loci across independent freshwater populations.  相似文献   

6.
Little is known about the genetic and molecular mechanisms that underlie adaptive phenotypic variation in natural populations or whether similar genetic and molecular mechanisms are utilized when similar adaptive phenotypes arise in independent populations. The threespine stickleback (Gasterosteus aculeatus) is a good model system to investigate these questions because these fish display a large amount of adaptive phenotypic variation, and similar adaptive phenotypes have arisen in multiple, independent stickleback populations. A particularly striking pattern of parallel evolution in sticklebacks is reduction of skeletal armor, which has occurred in numerous freshwater locations around the world. New genetic and genomic tools for the threespine stickleback have made it possible to identify genes that underlie loss of different elements of the skeletal armor. Previous work has shown that regulatory mutations at the Pitx1 locus are likely responsible for loss of the pelvic structures in independent stickleback populations from North America and Iceland. Here we show that the Pitx1 locus is also likely to underlie pelvic reduction in a Scottish population of threespine stickleback, which has apparently evolved pelvic reduction under a different selection regime than the North American populations.  相似文献   

7.
To assess the population genetic structure of the three-spined stickleback, Gasterosteus aculeatus, variability at 18 microsatellite loci was examined in 1724 individuals from 74 locations covering most of the species distribution range in Europe. The results revealed high overall degree of differentiation (F(ST) = 0.21) but contrasting level of divergence and genetic variability between habitat types. Marine populations were genetically relatively uniform even across great geographical distances as compared to substantial differentiation among freshwater populations. Analysis of molecular variance indicated low but significant (2.7%) variation in allele frequencies between geographical regions, but a negligible effect of habitat type (0.2%). The phylogenetic pattern was not explained by habitat type, but a weak signal of populations clustering according to geographical or water system origin was found. The results support the view that three-spined stickleback marine ancestors colonized northern European fresh waters during the postglacial marine submergence c. 10,000 years ago, whereas in the Mediterranean region colonization probably dates back to the Pleistocene. The independent origins of river and lake populations indicate that they originate from multiple colonizations rather than sharing common ancestry. In the continuous marine environment, the low degree of differentiation among populations can be explained by gene flow among subpopulations and large effective population size buffering divergence in neutral markers. In contrast, among postglacially established freshwater populations differentiation appears to be driven by genetic drift and isolation. The stepwise mutations appear to have contributed to the population differentiation in the southern part of the three-spined stickleback distribution range.  相似文献   

8.
We compared ancestral anadromous-marine and nonmigratory, stream-resident threespine stickleback (Gasterosteus aculeatus) populations to examine the outcome of relaxed selection on prolonged swimming performance. We reared marine and stream-resident fish from two locations in a common environment and found that both stream-resident populations had lower critical swimming speeds (U(crits) ) than marine populations. F1 hybrids from the two locations displayed significant differences in dominance, suggesting that the genetic basis for variation in U(crit) differs between locations. To determine which traits evolved in conjunction with, and may underlie, differences in performance capacity we measured a suite of traits known to affect prolonged swimming performance in fish. Although some candidate traits did not evolve (standard metabolic rate and two body shape traits), multiple morphological (pectoral fin size, shape, and four body shape measures) and physiological (maximum metabolic rate; MMR) traits evolved in the predicted direction in both stream-resident populations. However, data from F1 hybrids suggested that only one of these traits (MMR) had dominance effects similar to those of U(crit) in both locations. Overall, our data suggest that reductions in prolonged swimming performance were selected for in nonmigratory populations of threespine stickleback, and that decreases in MMR may mediate these reductions in performance.  相似文献   

9.
The transition from marine to freshwater life in the threespine stickleback (Gasterosteus aculeatus) is accompanied by complex morphological changes-including reduction in bony armor and change in body shape-but experimental evidence for the selective agents behind these evolutionary transitions is sparse. We investigated whether selection by predatory fish affects threespine stickleback morphology differentially when refuge is absent (pelagic lifestyle-ancestral condition) or present (benthic lifestyle-derived condition). Our results show that selection favors low numbers of lateral plates in habitats with refuge, whereas fully plated individuals have a selective advantage in habitats without refuge. We also found that a decrease in the length of the caudal peduncle increased survival probability, irrespective of habitat. The effect of spine lengths on survival was evident only in a multivariate analysis of selection, implying that it is essential to account for phenotypic and genetic correlations between traits before drawing conclusions about the effects of selection on single traits. Apart from uncovering targets and patterns of predator-induced selection on threespine stickleback morphology, our results provide direct evidence to support the hypothesis that differences in antipredator strategies in pelagic versus benthic sticklebacks could play a role in the repeated, independent cases of plate number reduction following freshwater colonization in this species.  相似文献   

10.
In this study, we analyzed the cytochrome b gene in threespine stickleback (Gasterosteus aculeatus) populations from Scotland. We found evidence of a postglacial population expansion in Scotland and large differences in genetic diversity estimates among populations. Higher levels of genetic diversity are negatively correlated with distance from the ocean. In addition, distance from the ocean and predation risk both explain variation in plate count in Scottish populations. Overall, the mtDNA data support the racemic model of evolution in threespine stickleback.  相似文献   

11.
Adaptation to novel environments can be based either on standing genetic variation or variation attributable to new mutations. When standing genetic variation for a functional adaptation is lacking, and variation due to new mutations is not yet available, adaptation is possible only through alternative functional solutions. Reduction in the number of bony lateral plates as an adaptation to freshwater colonization by marine threespine sticklebacks (Gasterosteus aculeatus) has occurred in numerous independent cases through allelic substitution in the ectodysplasin‐a (Eda) gene. Studying the phenotypic and genetic variation in plate number and size in five marine and six freshwater threespine stickleback populations, we found that when variation in Eda was limiting (i.e., alleles associated with the low‐plate morph were missing or in extremely low frequency), plate number reduction did not take place in freshwater populations, but reduced lateral plate coverage was achieved by a reduction in the size of lateral plates. Our results suggest that this phenotypically and genetically discrete "small‐plated" threespine stickleback—which is the dominant form in three northern European freshwater populations—may be functionally equivalent to the low‐plated morph and hence, serve as an example of convergent evolution toward functional similarity in the face of genetic constraints.  相似文献   

12.
Intraspecific phenotypic variation is ubiquitous and often associated with resource exploitation in emerging habitats. For example, reduced body size has evolved repeatedly in Arctic charr (Salvelinus alpinus L.) and threespine stickleback (Gasterosteus aculeatus L.) across post-glacial habitats of the Northern Hemisphere. Exploiting these models, we examined how body size and myogenesis evolve with respect to the 'optimum fibre size hypothesis', which predicts that selection acts to minimize energetic costs associated with ionic homeostasis by optimizing muscle fibre production during development. In eight dwarf Icelandic Arctic charr populations, the ultimate production of fast-twitch muscle fibres (FN(max)) was only 39.5 and 15.5 per cent of that in large-bodied natural and aquaculture populations, respectively. Consequently, average fibre diameter (FD) scaled with a mass exponent of 0.19, paralleling the relaxation of diffusional constraints associated with mass-specific metabolic rate scaling. Similar reductions in FN(max) were observed for stickleback, including a small-bodied Alaskan population derived from a larger-bodied oceanic stock over a decadal timescale. The results suggest that in species showing indeterminate growth, body size evolution is accompanied by strong selection for fibre size optimization, theoretically allowing resources saved from ionic homeostasis to be allocated to other traits affecting fitness, including reproduction. Gene flow between small- and large-bodied populations residing in sympatry may counteract the evolution of this trait.  相似文献   

13.
Examples of parallel evolution of phenotypic traits have been repeatedly demonstrated in threespine sticklebacks (Gasterosteus aculeatus) across their global distribution. Using these as a model, we performed a targeted genome scan--focusing on physiologically important genes potentially related to freshwater adaptation--to identify genetic signatures of parallel physiological evolution on a global scale. To this end, 50 microsatellite loci, including 26 loci within or close to (<6 kb) physiologically important genes, were screened in paired marine and freshwater populations from six locations across the Northern Hemisphere. Signatures of directional selection were detected in 24 loci, including 17 physiologically important genes, in at least one location. Although no loci showed consistent signatures of selection in all divergent population pairs, several outliers were common in multiple locations. In particular, seven physiologically important genes, as well as reference ectodysplasin gene (EDA), showed signatures of selection in three or more locations. Hence, although these results give some evidence for consistent parallel molecular evolution in response to freshwater colonization, they suggest that different evolutionary pathways may underlie physiological adaptation to freshwater habitats within the global distribution of the threespine stickleback.  相似文献   

14.
By studying systems in their earliest stages of differentiation, we can learn about the evolutionary forces acting within and among populations and how those forces could contribute to reproductive isolation. Such an understanding would help us to better discern and predict how selection leads to the maintenance of multiple morphs within a species, rather than speciation. The postglacial adaptive radiation of the threespine stickleback (Gasterosteus aculeatus) is one of the best‐studied cases of evolutionary diversification and rapid, repeated speciation. Following deglaciation, marine stickleback have continually invaded freshwater habitats across the northern hemisphere and established resident populations that diverged innumerable times from their oceanic ancestors. Independent freshwater colonization events have yielded broadly parallel patterns of morphological differences in freshwater and marine stickleback. However, there is also much phenotypic diversity within and among freshwater populations. We studied a lesser‐known freshwater “species pair” found in southwest Washington, where male stickleback in numerous locations have lost the ancestral red sexual signal and instead develop black nuptial coloration. We measured phenotypic variation in a suite of traits across sites where red and black stickleback do not overlap in distribution and at one site where they historically co‐occurred. We found substantial phenotypic divergence between red and black morphs in noncolor traits including shape and lateral plating, and additionally find evidence that supports the hypothesis of sensory drive as the mechanism responsible for the evolutionary switch in color from red to black. A newly described third “mixed” morph in Connor Creek, Washington, differs in head shape and size from the red and black morphs, and we suggest that their characteristics are most consistent with hybridization between anadromous and freshwater stickleback. These results lay the foundation for future investigation of the underlying genetic basis of this phenotypic divergence as well as the evolutionary processes that may drive, maintain, or limit divergence among morphs.  相似文献   

15.
Adaptive divergence may be facilitated if morphological and behavioural traits associated with local adaptation share the same genetic basis. It is therefore important to determine whether genes underlying adaptive morphological traits are associated with variation in behaviour in natural populations. Positive selection on low-armour alleles at the Ectodysplasin (Eda) locus in threespine stickleback has led to the repeated evolution of reduced armour, following freshwater colonization by fully armoured marine sticklebacks. This adaptive divergence in armour between marine and freshwater populations would be facilitated if the low allele conferred a behavioural preference for freshwater environments. We experimentally tested whether the low allele is associated with preference for freshwater by measuring the preference of each Eda genotype for freshwater versus saltwater after acclimation to either salinity. We found no association between the Eda low allele and preference for freshwater. Instead, the low allele was significantly associated with a reduced preference for the acclimation environment. This behaviour may facilitate the colonization of freshwater habitats from the sea, but could also hinder local adaptation by promoting migration of low alleles between marine and freshwater environments.  相似文献   

16.
Identifying the causal factors underlying natural selection remains a key challenge in evolutionary biology. Although the genetic basis for the plate morph evolution of three-spined stickleback (Gasterosteus aculeatus) is well described, the environmental variables that form the basis for different morphs are not understood. We measured the effects of dissolved calcium and salinity on the growth of sticklebacks with different plate morphs from Scotland and Poland. There was a significant interaction of calcium with plate morph for fish from both regions, with complete morph sticklebacks growing more slowly at low calcium concentrations and low morph sticklebacks showing divergent responses to calcium concentration. A Scottish anadromous population showed evidence of local adaptation to high salinity, which was independent of plate morph. Polish and Scottish populations diverged in their response to salinity, suggesting a difference in osmotic regulation. The results implicate a role for calcium in selecting for plate morph evolution in sticklebacks, possibly as a limiting element in skeletal growth.  相似文献   

17.
Climate change is predicted to lead to increased average temperatures and greater intensity and frequency of high and low temperature extremes, but the evolutionary consequences for biological communities are not well understood. Studies of adaptive evolution of temperature tolerance have typically involved correlative analyses of natural populations or artificial selection experiments in the laboratory. Field experiments are required to provide estimates of the timing and strength of natural selection, enhance understanding of the genetics of adaptation and yield insights into the mechanisms driving evolutionary change. Here, we report the experimental evolution of cold tolerance in natural populations of threespine stickleback fish (Gasterosteus aculeatus). We show that freshwater sticklebacks are able to tolerate lower minimum temperatures than marine sticklebacks and that this difference is heritable. We transplanted marine sticklebacks to freshwater ponds and measured the rate of evolution after three generations in this environment. Cold tolerance evolved at a rate of 0.63 haldanes to a value 2.5°C lower than that of the ancestral population, matching values found in wild freshwater populations. Our results suggest that cold tolerance is under strong selection and that marine sticklebacks carry sufficient genetic variation to adapt to changes in temperature over remarkably short time scales.  相似文献   

18.
The anadromous-freshwater three-spined stickleback (Gasterosteus aculeatus) system allows for inferring the role of adaptation in speciation with a high level of accuracy because the freshwater ecotype has evolved multiple times from a uniform anadromous ancestor. A cause for concern is that independent evolution among drainages is not guaranteed in areas with a poorly resolved glacial history. This is the case for the west European great rivers, whose downstream valleys flanked the southern limit of the late Pleistocene ice sheet. We tested for independent and postglacial colonization of these valleys hypothesizing that the relationships among anadromous and freshwater sticklebacks correspond to a raceme structure. We compared the reduction in plate number accompanying this colonization to the genetic differentiation using 13 allozyme and five microsatellite loci in 350 individuals. Overall microsatellite differentiation (F(ST) = 0.147) was twice as large as allozyme differentiation (F(ST) = 0.066). Although habitat-specific gene flow may mask the ancestral relationships among both ecotypes, levels of microsatellite differentiation supported the hypothesis of raceme-like divergence, reflecting independent colonizations rather than the presence of two distinct evolutionary clades. Under an infinite alleles model and in the absence of gene flow, the observed freshwater divergence might be reached after 440 (microsatellites) to 4500 (allozymes) generations. Hence, the anadromous-freshwater stickleback system most likely diverged postglacially. We conclude that the reduction in plate number in two freshwater basins probably occurred independently, and that its considerable variation among populations is not in agreement with the time since divergence.  相似文献   

19.
For over a century, evolutionary biologists have debated whether and how phenotypic plasticity impacts the processes of adaptation and diversification. The empirical tests required to resolve these issues have proven elusive, mainly because it requires documentation of ancestral reaction norms, a difficult prospect where many ancestors are either extinct or have evolved. The threespine stickleback radiation is not limited in this regard, making it an ideal system in which to address general questions regarding the role of plasticity in adaptive evolution. As retreating ice sheets have exposed new habitats, oceanic stickleback founded innumerable freshwater populations, many of which have evolved parallel adaptations to their new environments. Because the founding oceanic population is extant, we can directly evaluate whether specific patterns of ancestral phenotypic expression in the context of novel environments (plasticity), or over ontogeny, predisposed the repeated evolution of "benthic" and "limnetic" ecotypes in shallow and deep lakes, respectively. Consistent with this hypothesis, we found that oceanic stickleback raised in a complex habitat and fed a macroinvertebrate diet expressed traits resembling derived, benthic fish. Alternatively, when reared in a simple environment on a diet of zooplankton, oceanic stickleback developed phenotypes resembling derived, limnetic fish. As fish in both treatments grew, their body depths increased allometrically, as did the size of their mouths, while their eyes became relatively smaller. Allometric trajectories were subtly but significantly impacted by rearing environment. Thus, both environmental and allometric influences on development, along with their interactive effects, produced variation in phenotypes consistent with derived benthic and limnetic fish, which may have predisposed the repeated genetic accommodation of this specific suite of traits. We also found significant shape differences between marine and anadromous stickleback, which has implications for evaluating the ancestral state of stickleback traits.  相似文献   

20.
We investigated ontogenetic trends in body shape of 54 freshwater (48 lake, seven stream) and six anadromous populations of threespine stickleback (Gasterosteus aculeatus L.) from the Haida Gwaii archipelago off the west coast of Canada. Multivariate analysis of covariance on the partial warp scores generated from 12 homologous landmarks on 1,958 digital images of subadult and adult male stickleback indicated that there was considerable variability of population ontogenetic slopes. We used discriminant function analysis to quantify body shape and determined that anadromous stickleback, which are ancestral to the freshwater populations, have a strongly negative ontogenetic slope (?5.62; increased streamlining with increased size). All freshwater populations exhibit a more positive slope (91% differed significantly from the marine slope), with the differences being most accentuated in populations from ponds and streams. In pristine lakes, ontogenetic slope could be predicted by lake volume as well as multivariate measures of habitat. Evidence from field transplant experiments of one of the intact populations indicates a rapid change (5 years) from allometric to isometric growth, equivalent to about half of the total slope variation among intact populations on the archipelago. We interpret this shift as developmental plasticity and suggest this may comprise the precursor for selection of optimal body shapes in these stickleback populations. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号