首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Schultz KM  Merten JA  Klug CS 《Biochemistry》2011,50(13):2594-2602
MsbA is a member of the ABC transporter superfamily and is homologous to ABC transporters linked to multidrug resistance. The nucleotide binding domains (NBDs) of these proteins include conserved motifs that are involved in ATP binding, including conserved SALD residues (D-loop) that are diagnostic in identifying ABC transporters but whose roles have not been identified. Within the D-loop, single point mutations L511P and D512G were discovered by random mutational analysis of MsbA to disrupt protein function in the cell [Polissi, A., and Georgopoulos, C. (1996) Mol. Microbiol. 20, 1221-1233] but have not been further studied in MsbA or in detail in any other ABC transporter. In these studies, we show that both L511P and D512G mutants of MsbA are able to bind ATP at near-wild-type levels but are unable to maintain cell viability in an in vivo growth assay, verifying the theory that they are dysfunctional at some point after ATP binding. An ATPase assay further suggests that the L511P mutation prevents effective ATP hydrolysis, and an ATP detection assay reveals that only small amounts of ATP are hydrolyzed; D512G is able to hydrolyze ATP at a rate 3-fold faster than that of the wild type. EPR spectroscopy studies using reporter sites within the NBDs also indicate that at least some hydrolysis occurs in L511P or D512G MsbA but show fewer spectral changes than observed for the same reporters in the wild-type background. These studies indicate that L511 is necessary for efficient ATP hydrolysis and D512 is essential for conformational rearrangements required for flipping lipid A.  相似文献   

2.
ABC transporters harness the energy from ATP binding and hydrolysis to translocate substrates across the membrane. Binding of two ATP molecules at the nucleotide binding domains (NBDs) leads to the formation of an outward-facing state. The conformational changes required to reset the transporter to the inward-facing state are initiated by sequential hydrolysis of the bound nucleotides. In a homodimeric ABC exporter such as MsbA responsible for lipid A transport in Escherichia coli, sequential ATP hydrolysis implies the existence of an asymmetric conformation. Here we report the in vitro selection of a designed ankyrin repeat protein (DARPin) specifically binding to detergent-solubilized MsbA. Only one DARPin binds to the homodimeric transporter in the absence as well as in the presence of nucleotides, suggesting that it recognizes asymmetries in MsbA. DARPin binding increases the rate of ATP hydrolysis by a factor of two independent of the substrate-induced ATPase stimulation. Electron paramagnetic resonance (EPR) measurements are found to be in good agreement with the available crystal structures and reveal that DARPin binding does not affect the large nucleotide-driven conformational changes of MsbA. The binding epitope was mapped by cross-linking and EPR to the membrane-spanning part of the transmembrane domain (TMD). Using cross-linked DARPin-MsbA complexes, 8-azido-ATP was found to preferentially photolabel one chain of the homodimer, suggesting that the asymmetries captured by DARPin binding at the TMDs are propagated to the NBDs. This work demonstrates that in vitro selected binders are useful tools to study the mechanism of membrane proteins.  相似文献   

3.
Buchaklian AH  Klug CS 《Biochemistry》2005,44(14):5503-5509
MsbA is an ABC transporter that transports lipid A across the inner membrane of Gram-negative bacteria such as Escherichia coli. Without functional MsbA present, bacterial cells accumulate a toxic amount of lipid A within their inner membranes. A crystal structure of MsbA was recently obtained that provides an excellent starting point for functional dynamics studies in membranes [Chang and Roth (2001) Science 293, 1793-1800]. Although a structure of MsbA is now available, several functionally important motifs common to ABC transporters are unresolved in the crystal structure. The Walker A domain, one of the ABC transporter consensus motifs that is directly involved in ATP binding, is located within a large unresolved region of the MsbA ATPase domain. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful technique for characterizing local areas within a large protein structure in addition to detecting and following changes in local structure due to dynamic interactions. MsbA reconstituted into lipid membranes has been evaluated by EPR spectroscopy, and it has been determined that the Walker A domain forms an alpha-helical structure, which is consistent with the structure of this motif observed in other crystallized ABC transporters. In addition, the interaction of the Walker A residues with ATP before, during, and after hydrolysis was followed using SDSL EPR spectroscopy in order to identify the residues directly involved in substrate binding and hydrolysis.  相似文献   

4.
Previously published 3‐D structures of a prototypic ATP‐binding cassette (ABC) transporter, MsbA, have been recently corrected revealing large rigid‐body motions possibly linked to its catalytic cycle. Here, a closely related multidrug bacterial ABC transporter, BmrA, was studied using site‐directed spin labeling by focusing on a region connecting the transmembrane domain and the nucleotide‐binding domain (NBD). Electron paramagnetic resonance (EPR) spectra of single spin‐labeled cysteine mutants suggests that, in the resting state, this sub‐domain essentially adopts a partially extended conformation, which is consistent with the crystal structures of MsbA and Sav1866. Interestingly, one of the single point mutants (Q333C) yielded an immobilized EPR spectrum that could arise from a direct interaction with a vicinal tyrosine residue. Inspection of different BmrA models pointed to Y408, within the NBD, as the putative interacting partner, and its mutation to a Phe residue indeed dramatically modified the EPR spectra of the spin labeled Q333C. Moreover, unlike the Y408F mutation, the Y408A mutation abolished both ATPase activity and drug transport of BmrA, suggesting that a nonpolar bulky residue is required at this position. The spatial proximity of Q333 and Y408 was also confirmed by formation of a disulfide bond when both Q333 and T407 (or S409) were replaced jointly by a cysteine residue. Overall, these results indicate that the two regions surrounding Q333 and Y408 are close together in the 3‐D structure of BmrA and that residues within these two sub‐domains are essential for proper functioning of this transporter.  相似文献   

5.
Buchaklian AH  Funk AL  Klug CS 《Biochemistry》2004,43(26):8600-8606
MsbA is the ABC transporter for lipid A and is found in the inner membranes of Gram-negative bacteria such as Escherichia coli. Without MsbA present, bacterial cells accumulate a toxic amount of lipid A within their inner membranes. A crystal structure of MsbA was recently obtained that provides an excellent starting point for functional dynamics studies in membranes [Chang, and Roth (2001) Science 293, 1793-1800]. Although a structure of MsbA is now available, many questions remain concerning its mechanism of transport. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful approach for characterizing local areas within a large protein structure in addition to detecting and following changes in local structure due to dynamic interactions within a protein. The quaternary structure of the resting state of the MsbA homodimer reconstituted into lipid membranes has been evaluated by SDSL EPR spectroscopy and chemical cross-linking techniques. SDSL and cross-linking results are consistent with the controversial resting state conformation of the MsbA homodimer found in the crystal structure, with the tips of the transmembrane helices forming a dimer interface. The position of MsbA in the membrane bilayer along with the relative orientation of the transmembrane helical bundles with respect to one another has been determined. Characterization of the resting state of the MsbA homodimer is essential for future studies on the functional dynamics of this membrane transporter.  相似文献   

6.
LmrA is an ATP binding cassette (ABC) multidrug transporter in Lactococcus lactis that is a structural and functional homologue of the human multidrug resistance P-glycoprotein MDR1 (ABCB1). LmrA is also homologous to MsbA, an essential ABC transporter in Escherichia coli involved in the trafficking of lipids, including Lipid A. We have compared the substrate specificities of LmrA and MsbA in detail. Surprisingly, LmrA was able to functionally substitute for a temperature-sensitive mutant MsbA in E. coli WD2 at non-permissive temperatures, suggesting that LmrA could transport Lipid A. LmrA also exhibited a Lipid A-stimulated, vanadate-sensitive ATPase activity. Reciprocally, the expression of MsbA conferred multidrug resistance on E. coli. Similar to LmrA, MsbA interacted with photoactivatable substrate [3H]azidopine, displayed a daunomycin, vinblastine, and Hoechst 33342-stimulated vanadate-sensitive ATPase activity, and mediated the transport of ethidium from cells and Hoechst 33342 in proteoliposomes containing purified and functionally reconstituted protein. Taken together, these data demonstrate that MsbA and LmrA have overlapping substrate specificities. Our observations imply the presence of structural elements in the recently published crystal structures of MsbA in E. coli and Vibrio cholera (Chang, G., and Roth, C. B. (2001) Science 293, 1793-1800; Chang, G. (2003) J. Mol. Biol. 330, 419-430) that support drug-protein interactions and suggest a possible role for LmrA in lipid trafficking in L. lactis.  相似文献   

7.
Kawai T  Caaveiro JM  Abe R  Katagiri T  Tsumoto K 《FEBS letters》2011,585(22):3533-3537
ATP-binding cassette (ABC) transporters couple hydrolysis of ATP with vectorial transport across the cell membrane. We have reconstituted ABC transporter MsbA in nanodiscs of various sizes and lipid compositions to test whether ATPase activity is modulated by the properties of the bilayer. ATP hydrolysis rates, Michaelis-Menten parameters, and dissociation constants of substrate analog ATP-γ-S demonstrated that physicochemical properties of the bilayer modulated binding and ATPase activity. This is remarkable when considering that the catalytic unit is located ~50? from the transmembrane region. Our results validated the use of nanodiscs as an effective tool to reconstitute MsbA in an active catalytic state, and highlighted the close relationship between otherwise distant transmembrane and ATPase modules.  相似文献   

8.
Recent crystal structures of the multidrug ATP‐binding cassette (ABC) exporters Sav1866 from Staphylococcus aureus, MsbA from Escherichia coli, Vibrio cholera, and Salmonella typhimurium, and mouse ABCB1a suggest a common alternating access mechanism for export. However, the molecular framework underlying this mechanism is critically dependent on assumed conformational relationships between nonidentical crystal structures and therefore requires biochemical verification. The structures of homodimeric MsbA reveal a pair of glutamate residues (E208 and E208′) in the intracellular domains of its two half‐transporters, close to the nucleotide‐binding domains (NBDs), which are in close proximity of each other in the outward‐facing state but not in the inward‐facing state. Using intermolecular cysteine crosslinking between E208C and E208C′ in E. coli MsbA, we demonstrate that the NBDs dissociate in nucleotide‐free conditions and come close on ATP binding and ADP·vanadate trapping. Interestingly, ADP alone separates the half‐transporters like a nucleotide‐free state, presumably for the following catalytic cycle. Our data fill persistent gaps in current studies on the conformational dynamics of a variety of ABC exporters. Based on a single biochemical method, the findings describe a conformational cycle for a single ABC exporter at major checkpoints of the ATPase reaction under experimental conditions, where the exporter is transport active. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Buchaklian AH  Klug CS 《Biochemistry》2006,45(41):12539-12546
ATP-binding cassette (ABC) transporters make up one of the largest superfamilies of proteins known and have been shown to transport substrates ranging from lipids and antibiotics to sugars and amino acids. The dysfunction of ABC transporters has been linked to human pathologies such as cystic fibrosis, hyperinsulinemia, and macular dystrophy. Several bacterial ABC transporters are also necessary for bacterial survival and transport of virulence factors in an infected host. MsbA is a 65 kDa protein that forms a functional homodimer consisting of two six-helix transmembrane domains and two approximately 250 amino acid nucleotide-binding domains (NBD). The NBDs contain several conserved regions such as the Walker A, LSGGQ, and H motif that bind directly to ATP and align it for hydrolysis. MsbA transports lipid A, its native substrate, across the inner membrane of Gram-negative bacteria. The loss or dysfunction of MsbA results in a toxic accumulation of lipid A inside the cell, leading to cell-membrane instability and cell death. Using site-directed spin labeling electron paramagnetic resonance spectroscopy, conserved motifs within the MsbA NBD have been evaluated for structure and dynamics upon substrate binding. It has been determined that the LSGGQ NBD consensus sequence is consistent with an alpha-helical conformation and that these residues maintain extensive tertiary contacts throughout hydrolysis. The dynamics of the LSGGQ and the H-motif region have been studied in the presence of ATP, ADP, and ATP plus vanadate to identify the residues that are directly affected by interactions with the substrate before, after, and during hydrolysis, respectively.  相似文献   

10.
Bacterial ATP binding cassette (ABC) exporters fulfill a wide variety of transmembrane transport roles and are homologous to the human multidrug resistance P-glycoprotein. Recent X-ray structures of the exporters MsbA and Sav1866 have begun to describe the conformational changes that accompany the ABC transport cycle. Here we present cryo-electron microscopy structures of MsbA reconstituted into a lipid bilayer. Using ATPase inhibitors, we captured three nucleotide transition states of the transporter that were subsequently reconstituted into helical arrays. The enzyme–substrate complex (trapped by ADP-aluminum fluoride or AMPPNP) crystallized in a different helical lattice than the enzyme–product complex (trapped by ADP-vanadate). 20 Å resolution maps were calculated for each state and revealed MsbA to be a dimer with a large channel between the membrane spanning domains, similar to the outward facing crystal structures of MsbA and Sav1866. This suggests that while there are likely structural differences between the nucleotide transition states, membrane embedded MsbA remains in an outward facing conformation while nucleotide is bound.  相似文献   

11.
The 70-kDa peroxisomal membrane protein (PMP70) and the adrenoleukodystrophy protein (ALDP) are half ATP binding cassette (ABC) transporters in the peroxisome membrane. Mutations in the ALD gene encoding ALDP result in the X-linked neurodegenerative disorder adrenoleukodystrophy. Plausible models exist to show a role for ATP hydrolysis in peroxisomal ABC transporter functions. Here, we describe the first measurements of the rate of ATP binding and hydrolysis by purified nucleotide binding fold (NBF) fusion proteins of PMP70 and ALDP. Both proteins act as an ATP specific binding subunit releasing ADP after ATP hydrolysis; they did not exhibit GTPase activity. Mutations in conserved residues of the nucleotidases (PMP70: G478R, S572I; ALDP: G512S, S606L) altered ATPase activity. Furthermore, our results indicate that these mutations do not influence homodimerization or heterodimerization of ALDP or PMP70. The study provides evidence that peroxisomal ABC transporters utilize ATP to become a functional transporter.  相似文献   

12.
The retina-specific human ABC transporter (ABCR) functions in the retinal transport system and has been implicated in several inherited visual diseases, including Stargardt disease, fundus flavimaculatus, cone-rod dystrophy, and age-related macular degeneration. We have previously described a general ribonucleotidase activity of the first nucleotide binding domain (NBD1) of human ABCR (Biswas, E. E. (2001) Biochemistry 40, 8181-8187). In this communication, we present a quantitative study analyzing the effects of certain disease-associated mutations, Gly-863 --> Ala, Pro-940 --> Arg, and Arg-943 --> Gln on the nucleotide binding, and general ribonucleotidase activities of this domain. NBD1 proteins, harboring these mutations, were created through in vitro site-specific mutagenesis and expressed in Escherichia coli. Results of the enzyme-kinetic studies indicated that these mutations altered the ATPase and CTPase activities of NBD1. The G863A and P940R mutations were found to have significant attenuation of the rates of nucleotide hydrolysis and binding affinities. On the other hand, the R943Q mutation had small, but detectable reduction in its nucleotidase activity and nucleotide binding affinity. We have measured the nucleotide binding affinities of NBD1 protein and its mutants quantitatively by fluorescence anisotropy changes during protein binding to ethenoadenosine ATP (epsilonATP), a fluorescent ATP analogue. We have correlated the dissociation constant (K(D)) and the rates of nucleotide hydrolysis (V(max)) of NBD1 and its mutants with the available genetic data for these mutations.  相似文献   

13.
Biswas-Fiss EE 《Biochemistry》2006,45(11):3813-3823
We report here a novel regulation of the ATPase activity of the human retina specific ATP binding cassette transporter (ABC), ABCR, by nucleotide binding domain interactions. We also present evidence that recombinant nucleotide binding domains of ABCR interact in vitro in the complete absence of transmembrane domains (TMDs). Although similar domain-domain interactions have been described in other ABC transporters, the roles of such interactions on the enzymatic mechanisms of these transporters have not been demonstrated experimentally. A quantitative analysis of the in vitro interactions as a function of the nucleotide-bound state demonstrated that the interaction takes place in the absence of nucleotide as well as in the presence of ATP and that it only attenuates in the ADP-bound state. Analysis of the ATPase activities of these proteins in free and complex states indicated that the NBD1-NBD2 interaction significantly influences the ATPase activity. Further investigation, using site-specific mutants, showed that mutations in NBD2 but not NBD1 led to the alteration of the ATPase activity of the NBD1.NBD2 complex and residue Arg 2038 is critical to this regulation. These data indicate that changes in the oligomeric state of the nucleotide binding domains of ABCR are coupled to ATP hydrolysis and might represent a possible signal for the TMDs of ABCR to export the bound substrate. Furthermore, the data support a mechanistic model in which, upon binding of NBD2, NBD1 binds ATP but does not hydrolyze it or does so with a significantly reduced rate.  相似文献   

14.
We have investigated conformational changes of the purified maltose ATP-binding cassette transporter (MalFGK(2)) upon binding of ATP. The transport complex is composed of a heterodimer of the hydrophobic subunits MalF and MalG constituting the translocation pore and of a homodimer of MalK, representing the ATP-hydrolyzing subunit. Substrate is delivered to the transporter in complex with periplasmic maltose-binding protein (MalE). Cross-linking experiments with a variant containing an A85C mutation within the Q-loop of each MalK monomer indicated an ATP-induced shortening of the distance between both monomers. Cross-linking caused a substantial inhibition of MalE-maltose-stimulated ATPase activity. We further demonstrated that a mutation affecting the "catalytic carboxylate" (E159Q) locks the MalK dimer in the closed state, whereas a transporter containing the "ABC signature" mutation Q140K permanently resides in the resting state. Cross-linking experiments with variants containing the A85C mutation combined with cysteine substitutions in the conserved EAA motifs of MalF and MalG, respectively, revealed close proximity of these residues in the resting state. The formation of a MalK-MalG heterodimer remained unchanged upon the addition of ATP, indicating that MalG-EAA moves along with MalK during dimer closure. In contrast, the yield of MalK-MalF dimers was substantially reduced. This might be taken as further evidence for asymmetric functions of both EAA motifs. Cross-linking also caused inhibition of ATPase activity, suggesting that transporter function requires conformational changes of both EAA motifs. Together, our data support ATP-driven MalK dimer closure and reopening as crucial steps in the translocation cycle of the intact maltose transporter and are discussed with respect to a current model.  相似文献   

15.
ATP-sensitive K(+) (K(ATP)) channels are the target of a number of pharmacological agents, blockers like hypoglycemic sulfonylureas and openers like the hypotensive cromakalim and diazoxide. These agents act on the channel regulatory subunit, the sulfonylurea receptor (SUR), which is an ABC protein with homologies to P-glycoprotein (P-gp). P-gp is a multidrug transporter expressed in tumor cells and in some healthy tissues. Because these two ABC proteins both exhibit multispecific recognition properties, we have tested whether SUR ligands could be substrates of P-gp. Interaction with P-gp was assayed by monitoring ATPase activity of P-gp-enriched vesicles. The blockers glibenclamide, tolbutamide, and meglitinide increased ATPase activity, with a rank order of potencies that correlated with their capacity to block K(ATP) channels. P-gp ATPase activity was also increased by the openers SR47063 (a cromakalim analog), P1075 (a pinacidil analog), and diazoxide. Thus, these molecules bind to P-gp (although with lower affinities than for SUR) and are possibly transported by P-gp. Competition experiments among these molecules as well as with typical P-gp substrates revealed a structural similarity between drug binding domains in the two proteins. To rationalize the observed data, we addressed the molecular features of these proteins and compared structural models, computerized by homology from the recently solved structures of murine P-gp and bacterial ABC transporters MsbA and Sav1866. Considering the various residues experimentally assigned to be involved in drug binding, we uncovered several hot spots, which organized spatially in two main binding domains, selective for SR47063 and for glibenclamide, in matching regions of both P-gp and SUR.  相似文献   

16.
ZntA, a bacterial zinc-transporting P-type ATPase, is homologous to two human ATPases mutated in Menkes and Wilson diseases. To explore the roles of the bacterial ATPase residues homologous to those involved in the human diseases, we have introduced several point mutations into ZntA. The mutants P401L, D628A and P634L correspond to the Wilson disease mutations P992L, D1267A and P1273L, respectively. The mutations D628A and P634L are located in the C-terminal part of the phosphorylation domain in the so-called hinge motif conserved in all P-type ATPases. P401L resides near the N-terminal portion of the phosphorylation domain whereas the mutations H475Q and P476L affect the heavy metal ATPase-specific HP motif in the nucleotide binding domain. All mutants show reduced ATPase activity corresponding 0-37% of the wild-type activity. The mutants P401L, H475Q and P476L are poorly phosphorylated by both ATP and P(i). Their dephosphorylation rates are slow. The D628A mutant is inactive and cannot be phosphorylated at all. In contrast, the mutant P634L six residues apart in the same domain shows normal phosphorylation by ATP. However, phosphorylation by P(i) is almost absent. In the absence of added ADP the P634L mutant dephosphorylates much more slowly than the wild-type, whereas in the presence of ADP the dephosphorylation rate is faster than that of the wild-type. We conclude that the mutation P634L affects the conversion between the states E1P and E2P so that the mutant favors the E1 or E1P state.  相似文献   

17.
ABC transporters are ubiquitous membrane proteins that translocate solutes across biological membranes at the expense of ATP. In prokaryotic ABC importers, the extracytoplasmic anchoring of the substrate-binding protein (receptor) is emerging as a key determinant for the structural rearrangements in the cytoplasmically exposed ATP-binding cassette domains and in the transmembrane gates during the nucleotide cycle. Here the molecular mechanism of such signaling events was addressed by electron paramagnetic resonance spectroscopy of spin-labeled ATP-binding cassette maltose transporter variants (MalFGK2-E). A series of doubly spin-labeled mutants in the MalF-P2 domain involving positions 92, 205, 239, 252, and 273 and one triple mutant labeled at positions 205/252 in P2 and 83 in the Q-loop of MalK were assayed. The EPR data revealed that the substrate-binding protein MalE is bound to the transporter throughout the transport cycle. Concomitantly with the three conformations of the ATP-binding cassette MalK2, three functionally relevant conformations are found also in the periplasmic MalF-P2 loop, strictly dependent on cytoplasmic nucleotide binding and periplasmic docking of liganded MalE to MalFG. The reciprocal communication across the membrane unveiled here gives first insights into the stimulatory effect of MalE on the ATPase activity, and it is suggested to be an important mechanistic feature of receptor-coupled ABC transporters.  相似文献   

18.
Carrier I  Julien M  Gros P 《Biochemistry》2003,42(44):12875-12885
In the nucleotide-binding domains (NBDs) of ABC transporters, such as mouse Mdr3 P-glycoprotein (P-gp), an invariant carboxylate residue (E552 in NBD1; E1197 in NBD2) immediately follows the Walker B motif (hyd(4)DE/D). Removal of the negative charge in mutants E552Q and E1197Q abolishes drug-stimulated ATPase activity measured by P(i) release. Surprisingly, drug-stimulated trapping of 8-azido-[alpha-(32)P]ATP is still observed in the mutants in both the presence and absence of the transition-state analogue vanadate (V(i)), and ADP can be recovered from the trapped enzymes. The E552Q and E1197Q mutants show characteristics similar to those of the wild-type (WT) enzyme with respect to 8-azido-[alpha-(32)P]ATP binding and 8-azido-[alpha-(32)P]nucleotide trapping, with the latter being both Mg(2+) and temperature dependent. Importantly, drug-stimulated nucleotide trapping in E552Q is stimulated by V(i) and resembles the WT enzyme, while it is almost completely V(i) insensitive in E1197Q. Similar nucleotide trapping properties are observed when aluminum fluoride or beryllium fluoride is used as an alternate transition-state analogue. Partial proteolytic cleavage of photolabeled enzymes indicates that, in the absence of V(i), nucleotide trapping occurs exclusively at the mutant NBD, whereas in the presence of V(i), nucleotide trapping occurs at both NBDs. Together, these results suggest that there is single-site turnover occurring in the E552Q and E1197Q mutants and that ADP release from the mutant site, or another catalytic step, is impaired in these mutants. Furthermore, our results support a model in which the two NBDs of P-gp are not functionally equivalent.  相似文献   

19.
ABC transporters make a large and diverse family of proteins found in all phylae. AtCCMA is the nucleotide binding domain of a novel Arabidopsis mitochondrial ABC transporter. It is encoded in the nucleus and imported into mitochondria. Sub-organellar and topology studies find AtCCMA bound to the mitochondrial inner membrane, facing the matrix. AtCCMA exhibits an ATPase activity, and ATP/Mg(2+) can facilitate its dissociation from membranes. Blue Native PAGE shows that it is part of a 480-kDa complex. Yeast two-hybrid assays reveal interactions between AtCCMA and domains of CcmB, the mitochondria-encoded transmembrane protein of a conserved ABC transporter. All these properties designate the protein as the ortholog in plant mitochondria of the bacterial CcmA required for cytochrome c maturation. The transporter that involves AtCCMA defines a new category of eukaryotic ABC proteins because its transmembrane and nucleotide binding domains are encoded by separate genomes.  相似文献   

20.
Mutagenesis was used to investigate the functional role of six pairs of aspartate and glutamate residues (D450/D1093, E482/E1125, E552/E1197, D558/D1203, D592/D1237, and E604/E1249) that are highly conserved in the nucleotide binding sites of P-glycoprotein (Mdr3) and of other ABC transporters. Removal of the charge in E552Q/E1197Q and D558N/D1203N produced proteins with severely impaired biological activity when the proteins were analyzed in yeast cells for cellular resistance to FK506 and restoration of mating in a ste6Delta mutant. Mutations at other acidic residues had no apparent effect in the same assays. These four mutants were expressed in Pichia pastoris, purified to homogeneity, and biochemically characterized with respect to ATPase activity. Studies with purified proteins showed that mutants D558N and D1203N retained 14 and 30% of the drug-stimulated ATPase activity of wild-type (WT) Mdr3, respectively, and vanadate trapping of 8-azido[alpha-(32)P]nucleotide confirmed slower basal and drug-stimulated 8-azido-ATP hydrolysis compared to that for WT Mdr3. The E552Q and E1197Q mutants showed no drug-stimulated ATPase activity. Surprisingly, drugs did stimulate vanadate trapping of 8-azido[alpha-(32)P]nucleotide in E552Q and E1197Q at a level similar to that of WT Mdr3. This suggests that formation of the catalytic transition state can occur in these mutants, and that the bond between the beta- and gamma-phosphates is hydrolyzed. In addition, photolabeling by 8-azido[alpha-(32)P]nucleotide in the presence or absence of drug was also detected in the absence of vanadate in these mutants. These results suggest that steps after the transition state, possibly involved in release of MgADP, are severely impaired in these mutant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号