首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The gene of a cytoplasmic 18 S ribosomal RNA (18 S rDNA) of the dicotyledonous plant tomato (ycopersicon esculentum) cv. Rentita has been cloned, and its complete primary structure has been determined. The tomato 18 S rDNA is 1805 by long with a G+C content of 49.6%. Its sequence exhibits 94%–96% positional identity when it is colinearly aligned with the previously reported sequences of the 17–18 S rDNAs of the dicot soybean and the monocots maize and rice. A model of the secondary structure of the 18 S rRNA of angiosperms is presented and its genera-specific structural features are compared with a current eukaryotic 18 S rRNA consensus model.  相似文献   

3.
4.
G. F. Tucci  F. Maggini 《Protoplasma》1986,132(1-2):76-84
Summary By means of Southern blot hybridization, the structure of the ribosomal DNA in six species of theCynareae tribe has been analyzed. Artichoke and wild artichoke possess only one type of ribosomal genes 13 kb long;Onopordum acanthium has at least two types of rDNA repeats 9.9 kb and 10.3 kb long andO. illyricum has a third gene type 9.7 kb long; inGalactites tomentosa there are at least four ribosomal gene types of 10.9, 11.6, 11.5, and 10kb;Carduus nutans possesses two ribosomal gene types of the same length of 12.5 kb that vary in the nucleotide sequence of the external spacer. The rRNA genes of all the species studied have an identical restriction mapping in the 18 S and 25 S regions, differences in length and/or nucleotide sequence are present in the external spacer.  相似文献   

5.
6.
7.
We compare the 5S gene structure from nine Drosophila species. New sequence data (5S genes of D. melanogaster, D. mauritiana, D. sechellia, D. yakuba, D. erecta, D. orena, and D. takahashii) and already-published data (5S genes of D. melanogaster, D. simulans, and D. teissieri) are used in these comparisons. We show that four regions within the Drosophila 5S genes display distinct rates of evolution: the coding region (120 bp), the 5-flanking region (54–55 bp), the 3-flanking region (21–22 bp), and the internal spacer (149–206 bp). Intra- and interspecific heterogeneity is due mainly to insertions and deletions of 6–17-bp oligomers. These small rearrangements could be generated by fork slippages during replication and could produce rapid sequence divergence in a limited number of steps. Correspondence to: M. Wegnez  相似文献   

8.
9.
Data on molecular analysis of the insertion sites of nine random copies of burdock retrotransposon are presented. The 12-bp consensus sequence of the insertion sites, YNNUTUTUYAYA (Y-pyrimidine; U-purine), was determined. Homology between the burdock sequence and ribosomal genes was revealed. Three copies of this element were located within the region of ribosomal repeats: one copy in the 18S RNA gene, and two copies in the same intergenic spacer region, in the so-called Alu-repeats of Drosophila, in different copies of ribosomal genes.  相似文献   

10.
Two regions of the ribosomal DNA (rDNA) were sequenced from a range of species from the tribeTriticeae. One region, the central spacer, was found to be more divergent in sequence than the other, the 18 S-spacer junction. Both regions contained sequences 20–30 bp long which were more highly conserved than the remainder of the region and their possible significance in rDNA expression is discussed. Phenetic relationships based on the sequence data were generally consistent with the relationships based on other criteria. Species possessing the S, E, J1J2, D, and B genomes clustered together, with the H genome species being the most distinct of those examined. The R, P, and V genome species occupy an intermediate position in the overall pattern of relationships. Some relationships differed in detail from those established by other parameters, for example the position of the N genome species, and explanations for discrepancies of this type are discussed.  相似文献   

11.
12.
The non-coding intergenic regions of Hox genes are remarkably conserved among mammals. To determine the usefulness of this sequence for phylogenetic comparisons, we sequenced an 800-bp fragment of the Hoxc9–Hoxc8 intergenic region from several species belonging to different mammalian clades. Results obtained from the phylogenetic analysis are congruent with currently accepted mammalian phylogeny. Additionally, we found a TC mini satellite repeat polymorphism unique to felines. This polymorphism may serve as a useful marker to differentiate between mammalian species or as a genetic marker in feline matings. This study demonstrates usefulness of a comparative approach employing non-coding regions of Hox gene complexes.  相似文献   

13.
Summary Tandemly repeated DNA sequences containing structural genes encoding ribosomal RNA (rDNA) were investigated in 25 species of Hordeum using the wheat rDNA probe pTA71. The rDNA repeat unit lengths were shown to vary between 8.5 and 10.7 kb. The number of length classes (1–3) per accession generally corresponded to the number of nucleolar organizing regions (NORs). Intraspecific variation was found in H. parodii, H. spontaneum and H. leporinum, but not in H. bulbosum. Restriction analysis showed that the positions of EcoRI, SacI and certain BamHI cleavage sites in the rRNA structural genes were highly conserved, and that repeat unit length variation was generally attributable to the intergenic spacer region. Five rDNA BamHI restriction site maps corresponded to the following groups of species: Map A — H. murinum, H. glaucum, H. leporinum, H. bulbosum, H. marinum, H. geniculatum; Map B — H. leporinum; Map C — H. vulgare, H. spontaneum, H. agriocrithon; Map D — H. chilense, H. bogdanii; and Map E — remaining 14 Hordeum species. The repeat unit of H. bulbosum differed from all other species by the presence of a HindIII site. The closer relationship of H. bulbosum to H. leporinum, H. murinum and H. glaucum than to H. vulgare was indicated by their BamHI restriction maps.Contribution No. 1169, Plant Research Centre  相似文献   

14.
Despite the agricultural importance of both potato and tomato, very little is known about their chloroplast genomes. Analysis of the complete sequences of tomato, potato, tobacco, and Atropa chloroplast genomes reveals significant insertions and deletions within certain coding regions or regulatory sequences (e.g., deletion of repeated sequences within 16S rRNA, ycf2 or ribosomal binding sites in ycf2). RNA, photosynthesis, and atp synthase genes are the least divergent and the most divergent genes are clpP, cemA, ccsA, and matK. Repeat analyses identified 33–45 direct and inverted repeats ≥30 bp with a sequence identity of at least 90%; all but five of the repeats shared by all four Solanaceae genomes are located in the same genes or intergenic regions, suggesting a functional role. A comprehensive genome-wide analysis of all coding sequences and intergenic spacer regions was done for the first time in chloroplast genomes. Only four spacer regions are fully conserved (100% sequence identity) among all genomes; deletions or insertions within some intergenic spacer regions result in less than 25% sequence identity, underscoring the importance of choosing appropriate intergenic spacers for plastid transformation and providing valuable new information for phylogenetic utility of the chloroplast intergenic spacer regions. Comparison of coding sequences with expressed sequence tags showed considerable amount of variation, resulting in amino acid changes; none of the C-to-U conversions observed in potato and tomato were conserved in tobacco and Atropa. It is possible that there has been a loss of conserved editing sites in potato and tomato.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

15.
The nucleotide sequences of the internal transcribed spacers (ITS1 and ITS2) of the nuclear ribosomal DNA were analyzed in species belonging to gymnosperms and pteridophytes. The lengths of the ITSs of sixteen species of gymnosperms and seven species of pteridophytes were estimated. The gymnosperms have ITS1 regions larger than those observed in the pteridophytes and angiosperms (ca. 610–3100 bp versus 159–360 bp). On the other hand, the ITS2 regions appear to be of a conserved length (182–370 bp). We have determined the complete nucleotide sequences of ITS regions from four gymnosperm species and five pteridophyte species by cloning the PCR products. Sequence analysis showed the presence of three short tandem arranged subrepeats of about 70 bp in the 1112 bp ITS1 ofEphedra fragilis. Pyrimidine rich (about 90%) DNA segments of 40–50 bp were observed in the ITS1 ofGinkgo biloba. A highly conserved 16 bp long sequence known to be present in the ITS1 of the angiosperm species has been also found in the ITS1 ofCycas revoluta, Taxus baccata andEphedra fragilis. Dedicated to Prof.Emilio Battaglia.  相似文献   

16.
17.
ThepsbA-trnH intergenic region is among the most variable regions in the gymnosperm chloroplast genome. It is proposed as suitable for DNA barcoding studies and is useful in phylogenetics at the species level. This region consists of two parts differing in their evolutionary characteristics: 1) thepsbA 3′UTR (untranslated region) and 2) thepsbA-trnH intergenic spacer. We compared the sequence and RNA secondary structure of thepsbA 3′ UTR across gymnosperms and found consensus motifs corresponding to the stem portions of the RNA stem-loop structures and a consensus TGGATTGTTATGT box. ThepsbA-trnH spacer is highly variable in length and composition. Tandem repeats that form stem—loop structures were detected in both thepsbA 3′ UTR and the psbA-trnH spacer. The presence of promoters and stem—loop structures in the psbA-trnH spacer and high sequence variation in this region suggest that psbA and trnH in some gymnosperms are independently transcribed. Acomparison of chloroplast UTRs across gymnosperms offer clues to the identity of putative regulatory elements and information on selective constraints imposed on the chloroplast non-coding regions. The present study should inspire researchers to explore the full potential of thepsbA-trnH non-coding sequence and to further stimulate its application in a broader spectrum of studies, not limited to phylogenetics and DNA barcoding.  相似文献   

18.
Summary Size variations in the intergenic spacer of ribosomal DNA were detected between individual plants of openly pollinatedPhaseolus coccineus. Eleven days after sowing, two plant samples were examined: slowly developing plants with a length less than 40 cm; and fast developing plants with a length greater than 70 cm. The two samples were characterized by different plant weight and, at maturity, by highly distinctive seed yield. They also exhibited distinct patterns of protein expression as analyzed by 2-D electrophoresis. In particular a 38 kDa protein, related to malate dehydrogenase on the basis of its N-terminal sequence, was present at higher concentration and higher activity levels in fast developing plants. Intergenic spacer length variants were detected in both samples at approximately 180 bp intervals. More than one spacer length variant was present in each individual plant. At least 13 different intergenic spacer hybridization patterns were in fact detected: some patterns occurred equally in both slowly and fast developing samples while the majority of patterns was significantly different between the two samples.Abbreviations FDP fast developing plants - IGS intergenic spacer - MDH malate dehydrogenase - rDNA SLV spacer length variant of ribosomal DNA - SDP slowly developing plants  相似文献   

19.
The 3′ region of the external transcribed spacer (ETS) of 18S–26S nuclear ribosomal DNA was sequenced in 19 representatives ofCalycadenia/Osmadeniaand two outgroup species (Compositae) to assess its utility for phylogeny reconstruction compared to rDNA internal transcribed spacer (ITS) data. Universal primers based on plant, fungal, and animal sequences were designed to amplify the intergenic spacer (IGS) and an angiosperm primer was constructed to sequence the 3′ end of the ETS in members of tribe Heliantheae. Based on these sequences, an internal ETS primer useful across Heliantheaesensu latowas designed to amplify and sequence directly the 3′ ETS region in the study taxa, which were the subjects of an earlier phylogenetic investigation based on ITS sequences. Size variation in the amplified ETS region varied across taxa of Heliantheaesensu latofrom approximately 350 to 700 bp, in part attributable to an approximately 200-bp tandem duplication in a common ancestor ofCalycadenia/Osmadenia.Phylogenetic analysis of the 200-bp subrepeats and examination of apomorphic changes in the duplicated region demonstrate that the subrepeats inCalycadenia/Osmadeniahave evolved divergently. Phylogenetic analyses of the entire amplified ETS region yielded a highly resolved strict consensus tree that is nearly identical in topology to the ITS tree, with strong bootstrap and decay support on most branches. Parsimony analyses of combined ETS and ITS data yielded a strict consensus tree that is better resolved and generally better supported than trees based on either data set analyzed separately. We calculated an approximately 1.3- to 2.4-fold higher rate of sequence evolution by nucleotide substitution in the ETS region studied than in ITS-1 + ITS-2. A similar disparity in the proportion of variable (1.3 ETS:1 ITS) and potentially informative (1.5 ETS:1 ITS) sites was observed for the ingroup. Levels of homoplasy are similar in the ETS and ITS data. We conclude that the ETS holds great promise for augmenting ITS data for phylogenetic studies of young lineages.  相似文献   

20.
Mycobacterium sp. strain THO100 was isolated from a morpholine-containing culture of activated sewage sludge. This strain was able to utilize pyrrolidine, morpholine, piperidine, piperazine, and 1,2,3,6-tetrahydropyridine as the sole sources of carbon, nitrogen, and energy. The degradation pathway of pyrrolidine as the best substrate for cellular growth was proposed based on the assays of substrate-induced cytochrome P450 and constitutive enzyme activities toward 4-aminobutyric acid (GABA) and succinic semialdehyde (SSA). Its 16S ribosomal RNA gene sequence (16S rDNA) was identical to that of Mycobacterium tokaiense ATCC 27282T. The morABC genes responsible for alicyclic amine degradation were nearly identical among different species of Mycobacteria. Remarkably, repetitive sequences at the intergenic spacer (IGS) region between morC and orf1’ were detected by comparison of the nearly identical mor gene cluster regions. Considering the strain activity for alicyclic amine degradation, the deleted 65-bp DNA segment did not significantly alter the open reading frames, and the expression and functions of the P450mor system remained unaltered. In addition, we found a spontaneous deletion of P450mor from another strain HE5 containing the archetypal mor gene cluster, which indicated a possible occurrence of DNA recombination to rearrange the DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号