首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enzymes for galactose metabolism in Saccharomyces cerevisiae are encoded by three tightly linked genes. Data presented in this paper show that, in contrast to enzymes encoded by other gene clusters in yeast, these three enzymes are translated as separate polypeptides. First, two of the enzymes encoded by the cluster, galactokinase and uridylyl transferase. purified to near homogeneity, are separate polypeptides. Second, no precursor polypeptide-containing sequences common to both these enzymes is detectable in extracts from galactose-induced yeast cells. Third, no partial or absolute polarity of expression of the enzymes is observed in strains containing nonsense mutations in any of the genes of the cluster.Expression of the three galactose metabolic enzymes is co-ordinate, both during induction and during steady-state synthesis. This is true both for wild-type yeast strains and for strains carrying the long-term galactose adaptation mutation, gal3. In GAL3+ strains mutations within the galactose gene cluster have no effect on this co-ordinate expression. However, in gal3? strains, mutations in any of the genes of the cluster completely eliminate expression of the other two genes. These results suggest that the GAL3 gene product is responsible for inducer synthesis and that the actual inducer is an intermediate in galactose metabolism.  相似文献   

2.
The induced synthesis of galactokinase and the repressing effects of glucose on this synthesis have been investigated in whole yeast cells rendered permeable by treatment with dimethyl sulfoxide. It was found that the induction response of uninduced cells to galactose is clearly dependent on the nature of the carbon source upon which the culture was grown prior to exposure to galactose. Glucose-grown cells exhibited a long lag before induction, whereas lactate-grown cells exhibited induced synthesis within 8 min. A concentration of 0.5% galactose was found to be optimal for induction. The addition of glucose to yeast cultures growing on galactose resulted in a severe transient repression of synthesis which was followed by a resumed rate of synthesis characteristic of a weaker permanent catabolite repression. Neither 2-deoxygalactose nor fucose acted as gratuitous inducers of the pathway, nor did they serve as a substrates for galactokinase.  相似文献   

3.
The induction process of the galactose regulon has been intensively studied, but until now the nature of the inducer has remained unknown. We have analyzed a delta gal7 mutant of the yeast Kluyveromyces lactis, which lacks the galactotransferase activity and is able to express the genes of the Gal/Lac regulon also in the absence of galactose. We found that this expression is semiconstitutive and undergoes a strong induction during the stationary phase. The gal1-209 mutant, which has a reduced kinase activity but retains its positive regulatory function, also shows a constitutive expression of beta-galactosidase, suggesting that galactose is the inducer. A gal10 deletion in delta gal7 or gal1-209 mutants reduces the expression to under wild-type levels. The presence of the inducer could be demonstrated in both delta gal7 crude extracts and culture medium by means of a bioassay using the induction in gal1-209 cells. A mutation in the transporter gene LAC12 decreases the level of induction in gal7 cells, indicating that galactose is partly released into the medium and then retransported into the cells. Nuclear magnetic resonance analysis of crude extracts from delta gal7 cells revealed the presence of 50 microM galactose. We conclude that galactose is the inducer of the Gal/Lac regulon and is produced via UDP-galactose through a yet-unknown pathway.  相似文献   

4.
The regulation of phosphatidylcholine degradation as a function of the route of phosphatidylcholine (PC) synthesis and changing environmental conditions has been investigated in the yeast Saccharomyces cerevisiae. In the wild-type strains studied, deacylation of phosphatidylcholine to glycerophosphocholine is induced when choline is supplied to the culture medium and, also, when the culture temperature is raised from 30 to 37 degrees C. In strains bearing mutations in any of the genes encoding enzymes of the CDP-choline pathway for phosphatidylcholine biosynthesis (CKI1, choline kinase; CPT1, 1, 2-diacylglycerol choline phosphotransferase; PCT1, CTP:phosphocholine cytidylyltransferase), no induction of phosphatidylcholine turnover and glycerophosphocholine production is seen in response to choline availability or elevated temperature. In contrast, the induction of phosphatidylcholine deacylation does occur in a strain bearing mutations in genes encoding enzymes of the methylation pathway for phosphatidylcholine biosynthesis (i.e. CHO2/PEM1 and OPI3/PEM2). Whereas the synthesis of PC via CDP-choline is accelerated when shifted from 30 to 37 degrees C, synthesis of PC via the methylation pathway is largely unaffected by the temperature shift. These results suggest that the deacylation of PC to GroPC requires an active CDP-choline pathway for PC biosynthesis but not an active methylation pathway. Furthermore, the data indicate that the synthesis and turnover of CDP-choline-derived PC, but not methylation pathway-derived PC, are accelerated by the stress of elevated temperature.  相似文献   

5.
6.
Galactose repression of beta-galactosidase induction in Escherichia coli   总被引:4,自引:3,他引:1  
Beggs, William H. (University of Minnesota, Minneapolis), and Palmer Rogers. Galactose repression of beta-galactosidase induction in Escherichia coli. J. Bacteriol. 91:1869-1874. 1966.-Galactose repression of beta-galactosidase induction in Escherichia coli was investigated to determine whether the galactose molecule itself is the catabolite repressor of this enzyme system. Without exception, beta-galactosidase induction by cells grown in a synthetic salts medium with lactate or glycerol as the carbon source was more strongly repressed by glucose than by galactose. This relationship existed even when the organism was previously grown in the synthetic medium containing galactose as the source of carbon. Two observations suggested that the ability of galactose to repress beta-galactosidase formation by Escherichia coli depends directly upon the cells' capacity to catabolize galactose. First, galactose repression of beta-galactosidase synthesis was markedly enhanced in bacteria tested subsequent to gratuitous induction of the galactose-degrading enzymes with d-fucose. Second, galactose failed to exert a repressive effect on beta-galactosidase in a galactose-negative mutant lacking the first two enzymes involved in galactose catabolism. Glucose completely repressed enzyme formation in this mutant. This same mutant, into which the genes for inducible galactose utilization had been introduced previously by transduction, again exhibited galactose repression. Pyruvate was found to be at least as effective as galactose in repressing beta-galactosidase induction by cells grown in synthetic salts medium plus glycerol. It is concluded that the galactose molecule itself is not the catabolite repressor of beta-galactosidase, but that repression is exerted through some intermediate in galactose catabolism.  相似文献   

7.
The enzyme phosphoglucomutase functions at a key point in carbohydrate metabolism. In this paper, we show that the synthesis of the major isoform of yeast phosphoglucomutase, encoded by the GAL5 (PGM2) gene, is regulated in a manner that is distinct from that previously described for other enzymes involved in galactose metabolism in the yeast Saccharomyces cerevisiae. Accumulation of this isoform increased four- to sixfold when the culture experienced either glucose depletion or heat shock. However, heat shock induction did not occur unless the cells were under glucose repression. This nonadditive increase in expression suggests that the regulatory mechanisms controlling the heat shock induction and glucose repression of the GAL5 gene are functionally related. We previously demonstrated that phosphoglucomutase is modified by a posttranslational Glc-phosphorylation reaction. We now show that this posttranslational modification, like phosphoglucomutase expression itself, is also regulated by galactose induction and glucose repression. Finally, no evidence was found to indicate that the Glc-phosphorylation of phosphoglucomutase alters its enzymatic activity under the conditions examined.  相似文献   

8.
P. J. Bhat  D. Oh    J. E. Hopper 《Genetics》1990,125(2):281-291
The Saccharomyces cerevisiae GAL/MEL regulon genes are normally induced within minutes of galactose addition, but gal3 mutants exhibit a 3-5-day induction lag. We have discovered that this long-term adaptation (LTA) phenotype conferred by gal3 is complemented by multiple copies of the GAL1 gene. Based on this result and the striking similarity between the GAL3 and GAL1 protein sequences we attempted to detect galactokinase activity that might be associated with the GAL3 protein. By both in vivo and in vitro tests the GAL3 gene product does not appear to catalyze a galactokinase-like reaction. In complementary experiments, Escherichia coli galactokinase expressed in yeast was shown to complement the gal1 but not the gal3 mutation. Thus, the complementation activity provided by GAL1 is not likely due to galactokinase activity, but rather due to a distinct GAL3-like activity. Overall, the results indicate that GAL1 encodes a bifunctional protein. In related experiments we tested for function of the LTA induction pathway in gal3 cells deficient for other gene functions. It has been known for some time that gal3gal1, gal3gal7, gal3gal10, and gal3 rho- are incapable of induction. We constructed isogenic haploid strains bearing the gal3 mutation in combination with either gal15 or pgi1 mutations: the gal15 and pgi1 blocks are not specific for the galactose pathway in contrast to the gal1, gal7 and gal10 blocks. The gal3gal5 and gal3pgi1 double mutants were not inducible, whereas both the gal5 and pgi1 single mutants were inducible. We conclude that, in addition to the GAL3-like activity of GAL1, functions beyond the galactose-specific GAL1, GAL7 and GAL10 enzymes are required for the LTA induction pathway.  相似文献   

9.
A total of 37 recessive mutations showing enhanced resistance to the glucose repression of galactokinase synthesis have been isolated by a selection procedure with a GAL81 gal7 double mutant. These mutations were grouped into three different complementation classes. One class, reg1, contains mutants arising from mutations at a site close to, but complementing, the gal3 locus. The reg1 mutant also showed resistance to the glucose repression of invertase synthesis but not to that of alpha-D-glucosidase. The two other classes were identified as arising from recessive mutations at the GAL82 locus and the GAL83 locus, respectively, at which various dominant mutations were isolated previously. When in a constitutive background due to the GAL81 or gal80 mutation, the GAL82 and GAL83 mutations did not show a mutually additive effect on the resistance to glucose repression of galactokinase synthesis, while the reg1 and GAL82 (or GAL83) mutations did. Based upon the specific behavior of cells with various genotypes for the above genes in response to the concentration of galactose and glucose in the medium, we propose a model involving three independent circuits for glucose signals in the regulation of the structural genes for the galactose pathway enzymes.  相似文献   

10.
Cell-free extracts of baker's yeast possess mutarotase activity only after induction of cells in the presence of galactose. The mutarotase activity appears 1 h after transfer to a galactose-containing medium and rises in synchrony with the utilization of galactose. Cycloheximide blocks the induction completely at a concentration of 100 μg/ml. InSaccharomyces fragilis the mutarotase is constitutive but its activity is strikingly increased after growth on galactose. The yeast mutarotase resembles in some respects analogous enzymes from other cells (pH dependence, substrate specificity, heat lability). Its affinity ford-galactose is substantially greater than ford-glucose. There may exist a coupling between mutarotase activity and the anomer-specific galactokinase.  相似文献   

11.
12.
Regulation of lactose (beta-D-galactosidase) synthesis in the lactose-utilizing yeast Candida pseudotropicalis was studied. The enzyme was inducible by lactose and galactose. When grown on these sugars the enzyme level of the yeast was 20 times or higher than when grown on glycerol. The Km and optimal pH were similar for the lactase induced either by lactose or galactose. The hydrolysis of o-nitrophenyl-beta-D-galactopyranoside by the lactase was inhibited by galactose and several analogs and galactosides, but not by glucose. Lactose uptake activity observed in lactose-grown cells was very reduced in cells grown on glucose or galactose. Glucose repressed the induction of lactase, but not the metabolic system for galactose utilization. In continuous culture on lactose medium at dilution rates below 0.2 h-1 the specific lactase activity was higher than in batch cultures and decreased with increases in dilution rate. Lactase was induced by pulses of lactose and galactose in cells growing on glucose, but only at low dilution rates were the steady-state concentration of glucose was very low.  相似文献   

13.
Beet molasses is widely used as a growth substrate for bakers' and distillers' yeast in the production of biomass and ethanol. Most commercial yeasts do not fully utilise the carbohydrates in molasses since they are incapable of hydrolysing the disaccharide melibiose to glucose and galactose. Also, expression of genes encoding enzymes for the utilisation of carbon sources that are alternatives to glucose is tightly regulated, sometimes rates of yeast growth and/or ethanol production. The GAL genes are regulated by specific induction by galactose and repression during growth on glucose. In an industrial distillers' yeast, two genes interacting synergistically in glucose repression of galactose utilization, MIG1 and GAL80, have been disrupted with MEL1, encoding melibiase. The physiology of the wild-type strain and the recombinant strains was investigated on mixtures of glucose and galactose and on molasses. The recombinant strain started to ferment galactose when 9.7 g 1(-1) glucose was still present during a batch fermentation, whereas the wild-type strain did not consume any galactose in the presence of glucose. The ethanol yield in the recombinant strain was 0.50 g ethanol g sugar (-1) in an ethanol fermentation on molasses, compared with 0.48 g ethanol g sugar (-1) for the wild-type strain. The increased ethanol yield was due to utilization of melibiose in the molasses.  相似文献   

14.
Wang L  Chi Z  Wang X  Ju L  Chi Z  Guo N 《Microbiological research》2008,163(3):255-266
We found that the marine yeast strain W14-3 isolated from seawater of China Eastern Sea could produce riboflavin. It is interesting to observe that the marine yeast strain produced a large amount of riboflavin in the medium containing xylose, sucrose, galactose and maltose under the conditions of vigorous shaking. The yeast strain was found to belong to Candida membranifaciens subsp. flavinogenie based on the results of routine and molecular identification. The protein sequences deduced from the partial genes encoding GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone-4-phosphate synthase in the yeast exhibited high identity with those of the corresponding enzymes for riboflavin biosynthesis in other yeasts. Fe3+ available in the medium repressed riboflavin production and expression of the genes responsible for riboflavin biosynthesis in the yeast. The results have evidenced that a riboflavin synthesis pathway indeed existed in the yeast. This is the first study to report that C. membranifaciens subsp. flavinogenie W14-3 from the marine environment could produce riboflavin.  相似文献   

15.
16.
17.
Traits that do not contribute to fitness are expected to be lost during the course of evolution, either as a result of selection or drift. The Leloir pathway of galactose metabolism (GAL) is an extensively studied metabolic pathway that degenerated on at least three independent occasions during the evolutionary diversification of yeasts, suggesting that the pathway is costly to maintain in environments that lack galactose. Here I test this hypothesis by competing GAL pathway deletion mutants of Saccharomyces cerevisiae against an isogenic strain with an intact GAL pathway under conditions where expression of the pathway is normally induced, repressed, or uninduced. These experiments do not support the hypothesis that pleiotropy drives GAL pathway degeneration, because mutations that knock out individual GAL genes do not tend to increase fitness in the absence of galactose. At a molecular level, this result can be explained by the fact that yeast uses inexpensive regulatory proteins to tightly regulate the expression of structural genes that are costly to express. I argue that these results have general relevance for our understanding of the fitness consequences of gene disruption in yeast.  相似文献   

18.
19.
The activities of the first three enzymes for galactose catabolism normally become detectable within 15 min after the addition of galactose into a culture of the yeast Saccharomyces cerevisiae. In S. cerevisiae with a recessive mutation termed gal3, a longer-than-normal lag is observed before the appearance of the enzyme activities (O. Winge and C. Roberts, C. R. Trav. Lab. Carlsberg Ser. Physiol. 24:263-315, 1948). I isolated two S. cerevisiae mutants with temperature-sensitive defects in the GAL3 gene. Temperature shift experiments with one of those mutants led to the conclusion that the GAL3 function is required not only for the initiation of enzyme induction but also for the maintenance of the induced state in galactose-nonfermenting S. cerevisiae because of a defect in any of the genes for the galactose-catabolizing enzymes, such as gal1 or gal10. In contrast, the GAL3 function is phenotypically dispensable in galactose-metabolizing S. cerevisiae. Thus, the normal catabolism of galactose can substitute for the GAL3 function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号