首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
H Habe  K Kasuga  H Nojiri  H Yamane    T Omori 《Applied microbiology》1996,62(12):4471-4477
We obtained the DNA fragments encoding 2-hydroxy-6-oxo-7-methylocta-2,4-dienoic acid (HOMODA) hydrolase in the cumene (isopropylbenzene) degrader Pseudomonas fluorescens strain IP01 via PCR using two synthesized oligonucleotides corresponding to the conserved regions within known meta-cleavage compound hydrolases. Following colony hybridization using the amplified DNA as a probe, a 4.5-kb HindIII fragment was isolated from P. fluorescens IP01. After determining the nucleotide sequence of this fragment, three open reading frames (ORF11 [cumH], ORF12 [cumD], and ORF13) were identified. The deduced amino acid sequence of ORF12 showed homology with meta-cleavage compound hydrolases encoded by the tod, dmp, xyl, and bph operons. Although the product of ORF12 was found to exhibit HOMODA and 2-hydroxy-6-oxohepta-2,4-dienoic acid (HOHDA) hydrolase activities, it did not exhibit 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase activity. The deduced amino acid sequence of ORF11 showed 40.4% homology with the sequence of todX in Pseudomonas putida F1 (Y. Wang, M. Ralings, D. T. Gibson, D. Labbé, H. Bergeron, R. Brousseau, and P. C. K. Lau, Mol. Gen. Genet. 246:570-579, 1995). The nucleotide sequence of ORF13 and its flanking region showed strong homology (91.0%) with IS52 from Pseudomonas savastanoi (Y. Yamada, P.-D. Lee, and T. Kosuge, Proc. Natl. Acad. Sci. USA 83:8263-8267, 1982). By characterization of cumH and cumD, the entire cum gene cluster from the cumene-degrader P. fluorescens IP01 (cumA1A2A3A4BCEGFHD) has been identified.  相似文献   

2.
Biphenyl dioxygenase is the enzyme that catalyzes the stereospecific dioxygenation of the aromatic ring. This enzyme has attracted the attention of researchers due to its ability to oxidize polychlorinated biphenyls, which is one of the serious environmental contaminants. We determined the crystal structure of the terminal oxygenase component of the biphenyl dioxygenase (BphA1A2) derived from Rhodococcus strain sp. RHA1 in substrate-free and complex forms. These crystal structures revealed that the substrate-binding pocket makes significant conformational changes upon substrate binding to accommodate the substrate into the pocket. Our analysis of the crystal structures suggested that the residues in the substrate-binding pocket can be classified into three groups, which, respectively, seem to be responsible for the catalytic reaction, the orientation/conformation of the substrate, and the conformational changes of the substrate-binding pocket. The cooperative actions of residues in the three groups seem to determine the substrate specificity of the enzyme.  相似文献   

3.
Naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816 is a multicomponent enzyme system that oxidized naphthalene to cis-(1R, 2S)-dihydroxy-1,2-dihydronaphthalene. The terminal oxygenase component B was purified to homogeneity by a three-step procedure that utilized ion-exchange and hydrophobic interaction chromatography. The purified enzyme oxidized naphthalene only in the presence of NADH, oxygen, and partially purified preparations of components A and C. An estimated Mr of 158,000 was obtained by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed the presence of two subunits with molecular weights of ca. 55,000 and 20,000, indicative of an alpha 2 beta 2 quaternary structure. Absorption spectra of the oxidized enzyme showed maxima at 566 (shoulder), 462, and 344 nm, which were replaced by absorption maxima at 520 and 380 nm when the enzyme was reduced anaerobically by stoichiometric quantities of NADH in the presence of the other two components of the naphthalene dioxygenase system. Component B bound naphthalene. Enzyme-bound naphthalene was oxidized to product upon the addition of components A and C, NADH, and O2. These results, together with the detection of the presence of 6.0 g-atoms of iron and 4.0 g-atoms of acid-labile sulfur per mol of the purified enzyme, suggest that component B of the naphthalene dioxygenase system is an iron-sulfur protein which functions in the terminal step of naphthalene oxidation.  相似文献   

4.
Carbazole 1,9a-dioxygenase (CARDO) catalyzes the dihydroxylation of carbazole by angular position (C9a) carbon bonding to the imino nitrogen and its adjacent C1 carbon. This reaction is an initial degradation reaction of the carbazole degradation pathway by various bacterial strains. Only a limited number of Rieske non-heme iron oxygenase systems (ROSs) can catalyze this novel reaction, termed angular dioxygenation. Angular dioxygenation is also involved in the degradation pathways of carbazole-related compounds, dioxin, and CARDO can catalyze the angular dioxygenation for dioxin. CARDO consists of a terminal oxygenase component (CARDO-O), and the electron transport components, ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R). CARDO-O has a homotrimeric structure, and governs the substrate specificity of CARDO. Here, we have determined the crystal structure of CARDO-O of Janthinobacterium sp. strain J3 at a resolution of 1.95A. The alpha3 trimeric overall structure of the CARDO-O molecule roughly corresponds to the alpha3 partial structures of other terminal oxygenase components of ROSs that have the alpha3beta3 configuration. The CARDO-O structure is a first example of the terminal oxygenase components of ROSs that have the alpha3 configuration, and revealed the presence of the specific loops that interact with a neighboring subunit, which is proposed to be indispensable for stable alpha3 interactions without structural beta subunits. The shape of the substrate-binding pocket of CARDO-O is markedly different from those of other oxygenase components involved in naphthalene and biphenyl degradation pathways. Docking simulations suggested that carbazole binds to the substrate-binding pocket in a manner suitable for catalysis of angular dioxygenation.  相似文献   

5.
2-Hydroxy-6-oxo-7-methylocta-2,4-dienoate hydrolase (CumD) from Pseudomonas fluorescens IP01 hydrolyzes a meta-cleavage product generated in the cumene (isopropylbenzene) degradation pathway. The crystal structures of the inactive S103A mutant of the CumD enzyme complexed with isobutyrate and acetate ions were determined at 1.6 and 2.0 A resolution, respectively. The isobutyrate and acetate ions were located at the same position in the active site, and occupied the site for a part of the hydrolysis product with CumD, which has the key determinant group for the substrate specificity of related hydrolases. One of the oxygen atoms of the carboxyl group of the isobutyrate ion was hydrogen bonded with a water molecule and His252. Another oxygen atom of the carboxyl group was situated in an oxyanion hole formed by the two main-chain N atoms. The isopropyl group of the isobutyric acid was recognized by the side-chains of the hydrophobic residues. The substrate-binding pocket of CumD was long, and the inhibition constants of various organic acids corresponded well to it. In comparison with the structure of BphD from Rhodococcus sp. RHA1, the structural basis for the substrate specificity of related hydrolases, is revealed.  相似文献   

6.
The terminal oxygenase component of the biphenyl dioxygenase (BphA1A2 complex) was over-expressed with a novel over expression system in recombinant Rhodococcus strain and purified. The purified enzyme has been crystallized by the hanging drop vapor diffusion method and subjected to X-ray diffraction analysis. The crystals belong to the tetragonal system in the space group P4(1)2(1)2 or P4(3)2(1)2 and diffract to better than 2.2A resolution.  相似文献   

7.
BACKGROUND: In plants and photosynthetic bacteria, the tyrosine degradation pathway is crucial because homogentisate, a tyrosine degradation product, is a precursor for the biosynthesis of photosynthetic pigments, such as quinones or tocophenols. Homogentisate biosynthesis includes a decarboxylation step, a dioxygenation and a rearrangement of the pyruvate sidechain. This complex reaction is carried out by a single enzyme, the 4-hydroxyphenylpyruvate dioxygenase (HPPD), a non-heme iron dependent enzyme that is active as a homotetramer in bacteria and as a homodimer in plants. Moreover, in humans, a HPPD deficiency is found to be related to tyrosinemia, a rare hereditary disorder of tyrosine catabolism. RESULTS: We report here the crystal structure of Pseudomonas fluorescens HPPD refined to 2.4 A resolution (Rfree 27.6%; R factor 21.9%). The general topology of the protein comprises two barrel-shaped domains and is similar to the structures of Pseudomonas 2,3-dihydroxybiphenyl dioxygenase (DHBD) and Pseudomonas putida catechol 2,3-dioxygenase (MPC). Each structural domain contains two repeated betaalpha betabeta betaalpha modules. There is one non-heme iron atom per monomer liganded to the sidechains of His161, His240, Glu322 and one acetate molecule. CONCLUSIONS: The analysis of the HPPD structure and its superposition with the structures of DHBD and MPC highlight some important differences in the active sites of these enzymes. These comparisons also suggest that the pyruvate part of the HPPD substrate (4-hydroxyphenylpyruvate) and the O2 molecule would occupy the three free coordination sites of the catalytic iron atom. This substrate-enzyme model will aid the design of new inhibitors of the homogentisate biosynthesis reaction.  相似文献   

8.
The meta-cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) hydrolyzes 2-hydroxy-6-oxo-7-methylocta-2,4-dienoate (6-isopropyl HODA) in the cumene (isopropylbenzene) degradation pathway. To modulate the substrate specificity and catalytic efficiency of CumD toward substrates derived from monocyclic aromatic compounds, we constructed the CumD mutants, A129V, I199V, and V227I, as well as four types of double and triple mutants. Toward substrates with smaller side chains (e.g. 2-hydroxy-6-oxohepta-2,4-dienoate; 6-ethyl-HODA), the k(cat)/K(m) values of the single mutants were 4.2-11 fold higher than that of the wild type enzyme and 1.8-4.7 fold higher than that of the meta-cleavage product hydrolase from Pseudomonas putida F1 (TodF). The A129V mutant showed the highest k(cat)/K(m) value for 2-hydroxy-6-oxohepta-2,4-dienoate (6-ethyl-HODA). The crystal structure of the A129V mutant was determined at 1.65 A resolution, enabling location of the Ogamma atom of the Ser103 side chain. A chloride ion was bound to the oxyanion hole of the active site, and mutant enzymes at the residues forming this site were also examined. The k(cat) values of Ser34 mutants were decreased 2.9-65 fold, suggesting that the side chain of Ser34 supports catalysis by stabilizing the anionic oxygen of the proposed intermediate state (gem-diolate). This is the first crystal structure determination of CumD in an active form, with the Ser103 residue, one of the catalytically essential "triad", being intact.  相似文献   

9.
Oxidative biodegradation of aromatic compounds by bacteria usually begins with hydroxylation of the aromatic ring by multi-component dioxygenases like benzene dioxygenase, biphenyl dioxygenase, and others. These enzymes are composed of ferredoxin reductase, ferredoxin, and terminal oxygenase. Reducing equivalents that originate from NADH are transferred from ferredoxin reductase to ferredoxin and, in turn, to the terminal oxygenase, thus resulting in the activation of a dioxygen. BphA4 is the ferredoxin reductase component of biphenyl dioxygenase from Pseudomonas sp. strain KKS102. The amino acid sequence of BphA4 exhibits significant homology with the putidaredoxin reductase of the cytochrome P450cam system in Pseudomonas putida, as well as with various other oxygenase-coupled NADH-dependent ferredoxin reductases (ONFRs) of bacteria. To date, no structural information has been provided for the ferredoxin reductase component of the dioxygenase systems. In order to provide a structural basis for discussing the mechanism of electron transport between ferredoxin reductase and ferredoxin, crystal structures of BphA4 and its NADH complex were solved. The three-dimensional structure of BphA4 is different from those of ferredoxin reductases whose structures have already been determined, but adopts essentially the same fold as the enzymes of the glutathione reductase (GR) family. Also the three-dimensional structure of the first two domains of BphA4 adopts a fold similar to that of adrenodoxin reductase (AdR) in the mitochondrial cytochrome P450 system. Comparing the amino acid sequence with what is known of the three-dimensional structure of BphA4 strongly suggests that the other ONFRs have secondary structural features that are similar to that of BphA4. This analysis of the crystal structures of BphA4 suggests that Lys53 and Glu159 seem to be involved in the hydride transfer from NADH to FAD. Since the amino acid residues around the active site, some of which seem to be important to electron transport, are highly conserved among ONFRs, it is likely that the mechanism of electron transport of BphA4 is quite applicable to other ONFRs.  相似文献   

10.
Kynureninase [E.C. 3.7.1.3] is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the hydrolytic cleavage of l-kynurenine to anthranilic acid and l-alanine. Sequence alignment with other PLP-dependent enzymes indicated that kynureninase is in subgroup IVa of the aminotransferases, along with nifS, CsdB, and serine-pyruvate aminotransferase, which suggests that kynureninase has an aminotransferase fold. Crystals of Pseudomonas fluorescens kynureninase were obtained, and the structure was solved by molecular replacement using the CsdB coordinates combined with multiple isomorphous heavy atom replacement. The coordinates were deposited in the PDB (ID code 1QZ9). The structure, refined to an R factor of 15.5% to 1.85 A resolution, is dimeric and has the aminotransferase fold. The structure also confirms the prediction from sequence alignment that Lys-227 is the PLP-binding residue in P. fluorescens kynureninase. The conserved Asp-201, expected for an aminotransferase fold, is located near the PLP nitrogen, but Asp-132 is also strictly conserved and at a similar distance from the pyridinium nitrogen. Mutagenesis of both conserved aspartic acids shows that both contribute equally to PLP binding, but Asp-201 has a greater role in catalysis. The structure shows that Tyr-226 donates a hydrogen bond to the phosphate of PLP. Unusual among PLP-dependent enzymes, Trp-256, which is also strictly conserved in kynureninases from bacteria to humans, donates a hydrogen bond to the phosphate through the indole N1-hydrogen.  相似文献   

11.
N A Lynch  H Jiang    D T Gibson 《Applied microbiology》1996,62(6):2133-2137
A monoclonal antibody designated 302 beta that is specific for the beta subunit of the oxygenase component (ISPTOL) of toluene dioxygenase from Pseudomonas putida F1 was used to prepare an immunoaffinity column. ISPTOL in cell extracts of Escherichia coli JM109(pDTG611) bound to the column, and an enzyme-linked immunosorbent elution-screening assay with different combinations of polyols and kosmotropic anions was used to determine the conditions necessary for recovery of active enzyme. Elution from an 8-ml antibody column with 50 mM 2-(N-morpholino)ethanesulfonate buffer (pH 6.8) containing 50% ethylene glycol, 1.0 M ammonium sulfate, 1.0 mM dithiothreitol, and 0.2 mM ferrous ammonium sulfate gave approximately 2 mg of ISPTOL with a specific activity that was more than 300 times the specific activity previously obtained.  相似文献   

12.
Abstract Pseudomonas fluorescens NCIMB 11764 is able to utilise cyanide (both KCN and Ni(CN)42−) as a nitrogen source for growth. Under such conditions cyanide oxygenase activity is induced. When potassium cyanate (KOCN) is supplied as the sole nitrogen source for growth, cyanase activity is induced. It has been demonstrated that these two enzymic activities are physiologically distinct, and are not co-induced under any of the growth conditions tested.  相似文献   

13.
The terminal oxygenase component (ISPNAP) of naphthalene dioxygenase from Pseudomonas putida NCIB 9816-4 was purified to homogeneity. The protein contained approximately 4 g-atoms each of iron and acid-labile sulfide per mol of ISPNAP, and enzyme activity was stimulated significantly by addition of exogenous iron. The large (alpha) and small (beta) subunits of ISPNAP were isolated by two different procedures. The NH2-terminal amino acid sequences of the alpha and beta subunits were identical to the deduced amino acid sequences reported for the ndoB and ndoC genes from P. putida NCIB 9816 and almost identical to the NH2-terminal amino acid sequences determined for the large and small subunits of ISPNAP from P. putida G7. Gel filtration in the presence of 6 M urea gave an alpha subunit with an absorption maximum at 325 nm and broad absorption between 420 and 450 nm. The alpha subunit contained approximately 2 g-atoms each of iron and acid-labile sulfide per mol of the subunit. The beta subunit did not contain iron or acid-labile sulfide. These results, taken in conjunction with the deduced amino acid sequences of the large subunits from several iron-sulfur oxygenases, indicate that each alpha subunit of ISPNAP contains a Rieske [2Fe-2S] center.  相似文献   

14.
Homogentisate dioxygenase (HGO) cleaves the aromatic ring during the metabolic degradation of Phe and Tyr. HGO deficiency causes alkaptonuria (AKU), the first human disease shown to be inherited as a recessive Mendelian trait. Crystal structures of apo-HGO and HGO containing an iron ion have been determined at 1.9 and 2.3 A resolution, respectively. The HGO protomer, which contains a 280-residue N-terminal domain and a 140-residue C-terminal domain, associates as a hexamer arranged as a dimer of trimers. The active site iron ion is coordinated near the interface between subunits in the HGO trimer by a Glu and two His side chains. HGO represents a new structural class of dioxygenases. The largest group of AKU associated missense mutations affect residues located in regions of contact between subunits.  相似文献   

15.
Meta-cleavage product hydrolase (MCP-hydrolase) is one of the key enzymes in the microbial degradation of aromatic compounds. MCP-hydrolase produces 2-hydroxypenta-2,4-dienoate and various organic acids, according to the C6 substituent of the substrate. Comprehensive analysis of the substrate specificity of the MCP-hydrolase from Pseudomonas fluorescens IP01 (CumD) was carried out by determining the kinetic parameters for nine substrates and crystal structures complexed with eight cleavage products. CumD preferred substrates with long non-branched C6 substituents, but did not effectively hydrolyze a substrate with a phenyl group. Superimposition of the complex structures indicated that benzoate was bound in a significantly different direction than other aliphatic cleavage products. The directions of the bound organic acids appeared to be related with the k(cat) values of the corresponding substrates. The Ile139 and Trp143 residues on helix alpha4 appeared to cause steric hindrance with the aromatic ring of the substrate, which hampers base-catalyzed attack by water.  相似文献   

16.
The carbazole 1,9a-dioxygenase (CARDO) system of Pseudomonas resinovorans strain CA10 catalyzes the dioxygenation of carbazole; the 9aC carbon bonds to a nitrogen atom and its adjacent 1C carbon as the initial reaction in the mineralization pathway. The CARDO system is composed of ferredoxin reductase (CarAd), ferredoxin (CarAc), and terminal oxygenase (CarAa). CarAc acts as a mediator in the electron transfer from CarAd to CarAa. To understand the structural basis of the protein-protein interactions during electron transport in the CARDO system, the crystal structure of CarAc was determined at 1.9 A resolution by molecular replacement using the structure of BphF, the biphenyl 2,3-dioxygenase ferredoxin from Burkholderia cepacia strain LB400 as a search model. CarAc is composed of three beta-sheets, and the structure can be divided into two domains, a cluster-binding domain and a basal domain. The Rieske [2Fe-2S] cluster is located at the tip of the cluster-binding domain, where it is exposed to solvent. While the overall folding of CarAc and BphF is strongly conserved, the properties of their surfaces are very different from each other. The structure of the cluster-binding domain of CarAc is more compact and protruding than that of BphF, and the distribution of electric charge on its molecular surface is very different. Such differences are thought to explain why these ferredoxins can act as electron mediators in respective electron transport chains composed of different-featured components.  相似文献   

17.
The 4-hydroxyphenylacetate (4HPA) 3-monooxygenase is involved in the initial step of the 4HPA degradation pathway and catalyzes 4HPA hydroxylation to 3,4-dihydroxyphenylacetate. This enzyme consists of two components, an oxygenase (HpaB) and a reductase (HpaC). To understand the structural basis of the catalytic mechanism of HpaB, crystal structures of HpaB from Thermus thermophilus HB8 were determined in three states: a ligand-free form, a binary complex with FAD, and a ternary complex with FAD and 4HPA. Structural analysis revealed that the binding and dissociation of flavin are accompanied by conformational changes of the loop between beta5 and beta6 and of the loop between beta8 and beta9, leading to preformation of part of the substrate-binding site (Ser-197 and Thr-198). The latter loop further changes its conformation upon binding of 4HPA and obstructs the active site from the bulk solvent. Arg-100 is located adjacent to the putative oxygen-binding site and may be involved in the formation and stabilization of the C4a-hydroperoxyflavin intermediate.  相似文献   

18.
HmuO, a heme oxygenase of Corynebacterium diphtheriae, catalyzes degradation of heme using the same mechanism as the mammalian enzyme. The oxy form of HmuO, the precursor of the catalytically active ferric hydroperoxo species, has been characterized by ligand binding kinetics, resonance Raman spectroscopy, and x-ray crystallography. The oxygen association and dissociation rate constants are 5 microm(-1) s(-1) and 0.22 s(-1), respectively, yielding an O(2) affinity of 21 microm(-1), which is approximately 20 times greater than that of mammalian myoglobins. However, the affinity of HmuO for CO is only 3-4-fold greater than that for mammalian myoglobins, implying the presence of strong hydrogen bonding interactions in the distal pocket of HmuO that preferentially favor O(2) binding. Resonance Raman spectra show that the Fe-O(2) vibrations are tightly coupled to porphyrin vibrations, indicating the highly bent Fe-O-O geometry that is characteristic of the oxy forms of heme oxygenases. In the crystal structure of the oxy form the Fe-O-O angle is 110 degrees, the O-O bond is pointed toward the heme alpha-meso-carbon by direct steric interactions with Gly-135 and Gly-139, and hydrogen bonds occur between the bound O(2) and the amide nitrogen of Gly-139 and a distal pocket water molecule, which is a part of an extended hydrogen bonding network that provides the solvent protons required for oxygen activation. In addition, the O-O bond is orthogonal to the plane of the proximal imidazole side chain, which facilitates hydroxylation of the porphyrin alpha-meso-carbon by preventing premature O-O bond cleavage.  相似文献   

19.
The bioconversion of naphthalene to the 1,2-dihydro-1,2-dihydroxy derivative was performed in good yield using an Escherichia coli recombinant strain carrying Pseudomonas fluorescens N3 dioxygenase. However, the efficiency of such transformation is affected by many process parameters, and their optimization is essential to the scaling up of the process. The following process parameters were considered for optimization: cell concentration together with the corresponding glucose concentration (DCW/L); pH of medium; temperature; stirring speed; air flow; substrate concentration; Fe(2+) concentration; microelements concentration; reaction volume. We used a two-step multivariate experimental design to select important variables and assign them optimal values. The most significant parameters were selected by adopting a Plackett-Burman design, and were then correlated, using a full factorial design, with the experimental results. The experimental results illustrate that the optimized process of recombinant whole cell biotransformation in two-liquid phase systems enhances the naphthalene dihydrodiol yield threefold. This biotransformation opens the way to future experiments involving different substrates.  相似文献   

20.
Sulfur oxygenase reductase (SOR) simultaneously catalyzes oxidation and reduction of elemental sulfur to produce sulfite, thiosulfate, and sulfide in the presence of molecular oxygen. In this study, crystal structures of wild type and mutants of SOR from Acidianus tengchongensis (SOR-AT) in two different crystal forms were determined and it was observed that 24 identical SOR monomers form a hollow sphere. Within the icosatetramer sphere, the tetramer and trimer channels were proposed as the paths for the substrate and products, respectively. Moreover, a comparison of SOR-AT with SOR-AA (SOR from Acidianus ambivalens) structures showed that significant differences existed at the active site. Firstly, Cys31 is not persulfurated in SOR-AT structures. Secondly, the iron atom is five-coordinated rather than six-coordinated, since one of the water molecules ligated to the iron atom in the SOR-AA structure is lost. Consequently, the binding sites of substrates and a hypothetical catalytic process of SOR were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号