首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bourke AF 《Current biology : CB》2007,17(13):R519-R520
A recent study shows that, in social insects where workers suppress or 'police' the reproduction of nestmate workers, only a subset of workers act as police. This confirms that policing can serve a collective rather than a selfish interest.  相似文献   

2.
In vertebrates, it is well established that there are many intricate interactions between the immune system and the nervous system, and vice versa. Regarding insects, until now little has been known about the link between these two systems. Here, we present behavioural evidence indicating a link between the immune system and the nervous system in insects. We show that otherwise non-infected honeybees whose immune systems are challenged by a non-pathogenic immunogenic elicitor lipopolysaccharide (LPS) have reduced abilities to associate an odour with sugar reward in a classical conditioning paradigm. The cost of an immune response therefore not only affects survival of the host, as previously shown, but also everyday behaviour and memory formation.  相似文献   

3.
Sometimes science advances because of a new idea. Sometimes, it's because of a new technique. When both occur together, exciting times result. In the study of social insects, DNA-based methods for measuring relatedness now allow increasingly detailed tests of Hamilton's theory of kin selection.  相似文献   

4.
The international conference ‘Social Biomimicry: Insect Societies and Human Design’, hosted by Arizona State University, USA, 18–20 February 2010, explored how the collective behaviour and nest architecture of social insects can inspire innovative and effective solutions to human design challenges. It brought together biologists, designers, engineers, computer scientists, architects and businesspeople, with the dual aims of enriching biology and advancing biomimetic design.  相似文献   

5.
The evolution of social groupings in insects, especially wasps, is compared to that of social amoebae (cellular slime moulds). They both show a gamut of colony sizes, from solitary forms to complex colonies with a division of labour. The various ideas as to how there might have been an evolution of complexity within insect societies, such as the role of genetic relatedness, the role of mutualism, the origin of sterility, the manipulation and exploitation of some individuals by others within a colony, are discussed, and then applied to social amoebae. The result is both interesting and instructive: despite some differences, there are many striking parallels, which suggests that there are some common denominators in the formation and evolution of a social existence among organisms.  相似文献   

6.
7.
Insect learning can change the preferences an egg laying female displays towards different host plant species. Current hypotheses propose that learning may be advantageous in adult host selection behaviour through improved recognition, accuracy or selectivity in foraging. In this paper, we present a hypothesis for when learning can be advantageous without such improvements in adult host foraging. Specifically, that learning can be an advantageous strategy for egg laying females when larvae must feed on more than one plant in order to complete development, if the fitness of larvae is reduced when they switch to a different host species. Here, larvae benefit from developing on the most abundant host species, which is the most likely choice of host for an adult insect which increases its preference for a host species through learning. The hypothesis is formalised with a mathematical model and we provide evidence from studies on the behavioural ecology of a number of insect species which demonstrate that the assumptions of this hypothesis may frequently be fulfilled in nature. We discuss how multiple mechanisms may convey advantages in insect learning and that benefits to larval development, which have so far been overlooked, should be considered in explanations for the widespread occurrence of learning.  相似文献   

8.
Insects are suitable model organisms for studying mechanisms underlying olfactory coding and olfactory learning, by their unique adaptation to host plants in which the chemical senses are essential. Recent molecular biological studies have shown that a large number of genes in insects and other organisms are coding for olfactory receptor proteins. In general, one receptor type seems to be expressed in each neurone. The functional characterisations of olfactory receptor neurones have been extensive in certain insect species, demonstrating a fine-tuning of single neurones to biologically relevant odourants; both insect and plant produced volatiles. Stained neurones of the same functional type have been shown to project in one and the same glomerular unit in the primary olfactory centre, the antennal lobe. This corresponds to molecular biological studies, showing projections in one glomerulus by neurones expressing the same receptor type. Comparison of these findings with physiological and morphological characterisations of antennal lobe neurones has indicated correspondence between input and output of the glomerular units. Examples are presented from studies of heliothine moths. From the antennal lobe, the olfactory information is further conveyed to the mushroom bodies, particularly important for learning, and the lateral protocerebrum, a premotoric area. The three brain areas are regions of synaptic plasticity important in learning of odours, which is well studied in the honeybee but also in species of moths.  相似文献   

9.
The ability of prey to observe and learn to recognize potential predators from the behaviour of nearby individuals can dramatically increase survival and, not surprisingly, is widespread across animal taxa. A range of sensory modalities are available for this learning, with visual and chemical cues being well-established modes of transmission in aquatic systems. The use of other sensory cues in mediating social learning in fishes, including mechano-sensory cues, remains unexplored. Here, we examine the role of different sensory cues in social learning of predator recognition, using juvenile damselfish (Amphiprion percula). Specifically, we show that a predator-naive observer can socially learn to recognize a novel predator when paired with a predator-experienced conspecific in total darkness. Furthermore, this study demonstrates that when threatened, individuals release chemical cues (known as disturbance cues) into the water. These cues induce an anti-predator response in nearby individuals; however, they do not facilitate learnt recognition of the predator. As such, another sensory modality, probably mechano-sensory in origin, is responsible for information transfer in the dark. This study highlights the diversity of sensory cues used by coral reef fishes in a social learning context.  相似文献   

10.
Animals can acquire information from the environment privately, by sampling it directly, or socially, through learning from others. Generally, private information is more accurate, but expensive to acquire, while social information is cheaper but less reliable. Accordingly, the 'costly information hypothesis' predicts that individuals will use private information when the costs associated with doing so are low, but that they should increasingly use social information as the costs of using private information rise. While consistent with considerable data, this theory has yet to be directly tested in a satisfactory manner. We tested this hypothesis by giving minnows (Phoxinus phoxinus) a choice between socially demonstrated and non-demonstrated prey patches under conditions of low, indirect and high simulated predation risk. Subjects had no experience (experiment 1) or prior private information that conflicted with the social information provided by the demonstrators (experiment 2). In both experiments, subjects spent more time in the demonstrated patch than in the non-demonstrated patch, and in experiment 1 made fewer switches between patches, when risk was high compared with when it was low. These findings are consistent with the predictions of the costly information hypothesis, and imply that minnows adopt a 'copy-when-asocial-learning-is-costly' learning strategy.  相似文献   

11.
Helping is a cornerstone of social organization and commonplace in human societies. A major challenge for the evolutionary sciences is to explain how cooperation is maintained in large populations with high levels of migration, conditions under which cooperators can be exploited by selfish individuals. Cultural group selection models posit that such large-scale cooperation evolves via selection acting on populations among which behavioural variation is maintained by the cultural transmission of cooperative norms. These models assume that individuals acquire cooperative strategies via social learning. This assumption remains empirically untested. Here, I test this by investigating whether individuals employ conformist or payoff-biased learning in public goods games conducted in 14 villages of a forager–horticulturist society, the Pahari Korwa of India. Individuals did not show a clear tendency to conform or to be payoff-biased and are highly variable in their use of social learning. This variation is partly explained by both individual and village characteristics. The tendency to conform decreases and to be payoff-biased increases as the value of the modal contribution increases. These findings suggest that the use of social learning in cooperative dilemmas is contingent on individuals'' circumstances and environments, and question the existence of stably transmitted cultural norms of cooperation.  相似文献   

12.
Selfish gene and self-organisation approaches have revolutionised the study of social insects and have provided unparalleled insights into the highly sophisticated nature of insect social evolution. Here, we briefly review the core programs and interfaces with communication and recognition studies that characterise these fields today, and offer an interdisciplinary future perspective for the study of social insect evolutionary biology.  相似文献   

13.
14.
The evolution of group living requires that individuals limit the inherent risks of parasite infection. To this end, group living insects have developed a unique capability of mounting collective anti-parasite defences, such as allogrooming and corpse removal from the nest. Over the last 20 years, this phenomenon (called social immunity) was mostly studied in eusocial insects, with results emphasizing its importance in derived social systems. However, the role of social immunity in the early evolution of group living remains unclear. Here, I investigate this topic by first presenting the definitions of social immunity and discussing their applications across social systems. I then provide an up-to-date appraisal of the collective and individual mechanisms of social immunity described in eusocial insects and show that they have counterparts in non-eusocial species and even solitary species. Finally, I review evidence demonstrating that the increased risks of parasite infection in group living species may both decrease and increase the level of personal immunity, and discuss how the expression of social immunity could drive these opposite effects. By highlighting similarities and differences of social immunity across social systems, this review emphasizes the potential importance of this phenomenon in the early evolution of the multiple forms of group living in insects.  相似文献   

15.
植食性昆虫的学习行为一般具有习惯性反应、厌恶性学习、联系性学习、敏感性反应、嗜好性诱导几种类型,它们对害虫防治方法的效果具有重要影响。害虫通过嗜好性诱导对栖境中大面积单作农作物造成更大的危害,通过联系性学习可对诱虫植物的效果产生积极或消极的影响。害虫对驱避剂或杀虫剂等产生习惯性反应可降低其防治效果。害虫对寄主植物驱避抗性产生习惯性学习就会加重对作物的为害,产生厌恶性学习则有利于对作物的保护。利用害虫的联系性学习行为,释放前让不育雄虫学习自然交配场所的环境刺激,可增强通过释放不育雄虫控制害虫的防治效果。了解植食性昆虫学习行为对害虫治理的影响有助于研究和发展有效的栖境调控、行为调控等策略和方法。  相似文献   

16.
17.
Abstract To the benefit of taxonomists, systematists, ecologists, conservationists and the interested general public community GBIF (the Global Biodiversity Information Facility) now offers more than 280 million records from biological and geological collections and observation data bases worldwide. Taxonomic revisions, phylogenetic analyses, large scale ecological modelling, and decisionmaking in conservation and planning issues are simplified and may be based on better background knowledge than ever before using the central GBIF portal at http://www.gbif.org/ or regional portals hosted by the different GBIF‐nodes.  相似文献   

18.
There is increasing evidence that some behavioural differences between groups of chimpanzees can be attributed neither to genetic nor to ecological variation. Such differences are likely to be maintained by social learning. While humans teach their offspring, and acquire cultural traits through imitative learning, there is little evidence of such behaviours in chimpanzees. However, by appealing only to incremental changes in motivation, attention and attention-soliciting behaviour, and without expensive changes in cognition, we can hypothesise the possible emergence of imitation and pedagogy in evolutionary history.  相似文献   

19.
The interaction of two feedback loops was investigated: one regulating cuticular stress in the stick insect's leg and the other controlling leg posture. Exclusive stimulation of either of the two relevant sense organs, the load-sensitive trochantero-femoral campaniform sensilla (CS) or the position-/movement-sensitive ventral coxal hairplate (cxHPv), elicits resistance reflex responses in the retractor and the protractor coxae motoneuron pools. Concurrent application of both stimulus modalities reveals that the strength of the postural feedback response is dependent on sign and amplitude of the load feedback response and vice versa. This superposition of the two reflex responses appears to be non-linear. The results indicate that the CS information is underlying a force control function in this six-legged animal. It is hypothesized that the force control of each single leg could help to optimize the force distribution of the six-legged system, even - due to the mechanical coupling - without explicit neuronal pathways. On the level of the single leg control it was studied whether the different information provided by the two feedback transducers converge on the level of retractor coxae motoneurons or whether this information is fully preprocessed at the level of premotor interneurons. It is shown here that the hairplate afferents make direct, excitatory connections with the retractor motoneurons. Studies of the motoneurons' membrane conductances during exclusive CS stimulation reveal that both, excitatory as well as inhibitory synaptic drive is delivered onto the retractor motoneurons. Thus, the motoneuronal membrane is shown to be an important stage for the sensor fusion of the two modalities.  相似文献   

20.
Sherry DF 《Current biology : CB》2008,18(14):R608-R610
Social transmission of learned behaviour is well documented in vertebrates but much less so among invertebrates. New research shows that nectar robbing can spread socially among bumble bees, even in the absence of nectar-robbing models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号