共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
目的:探讨脑源性神经营养因子(BDNF)对β淀粉样蛋白(Aβ)致大鼠突触功能障碍的保护作用。方法:36只健康雄性SD大鼠随机分为对照、Aβ25-35、BDNF、不同剂量BDNF(0.02μg,0.1μg,0.5μg)+Aβ25-35等六组(n=6)。实验采用电生理学手段,利用自制的海马给药装置和刺激/记录绑定电极引导和记录大鼠在体海马CA1区场兴奋性突触后电位(fEPSPs)和高频刺激(HFS)诱导的长时程增强(LTP)。结果:①海马CA1区注射Aβ25-35(2 nmol)不影响基础性fEPSPs,但能显著抑制LTP的诱导与维持,HFS后fEPSPs平均幅度较对照组明显降低(P<0.01);②海马CA1区注射BDNF(0.1μg)不影响基础性fEPSPs,也不影响LTP的诱导与维持,HFS后fEPSPs平均幅度与对照组相比没有明显差异(P>0.05);③与单独给予Aβ25-35相比,不同浓度的BDNF(0.1μg,0.5μg)与Aβ25-35合用组在HFS后0 min、30 min和60 min时的fEPSPs平均幅度均明显增加(P<0.01),并具有一定的剂量依赖性,表明BDNF预处理可有效拮抗Aβ25-35引起的LTP抑制。结论:脑内注射BDNF能够预防和拮抗由Aβ25-35引起的海马LTP损伤,提示BDNF水平的上调有助于维持正常的突触可塑性并可能改善AD患者的学习记忆功能。 相似文献
3.
4.
阿尔茨海默病(Alzheimer disease’s, AD)是以老年斑(senile plaques, SPs)、神经原纤维缠结(neurofibrillary tangles, NFTs)等为主要病理特征的神经退行性疾病。β-淀粉样蛋白(β-amyloid protein, Aβ)在神经元胞外聚集形成老年斑,是引起AD的关键因素。过量Aβ的产生来源于β-淀粉样前体蛋白(β-amyloid precursor protein, APP)裂解途径的异常。因此,探究APP在AD的发病过程中裂解途径及Aβ的产生机制具有重要意义。目前,很多药物研究以减少和清除老年斑为目的,但是老年斑的形成是由全长Aβ和多种截断型Aβ共同作用的结果,并且其对SPs形成的影响作用机制尚未完全明确。本文就APP裂解途径及截断型Aβ的产生机制进行综述,以期为AD的研究提供理论依据。 相似文献
5.
6.
7.
皮质酮对大鼠海马脑片CA1区长时程增强效应的影响 总被引:2,自引:0,他引:2
目的:探讨糖皮质激素对海马神经突触可塑性的影响。方法:高浓度(10^-5mol/L)皮质酮直接作用于大鼠海马脑片,记录CA1区LTP)。结果:海马脑片CA1区LTP的形成受到抑制。结论:应激时过量糖皮质激素会直接影响海马神经突触可塑性。 相似文献
8.
每天训练作业结束后对动物进行一次电休克处理,较多的动物(4/6)虽用了比对照组约多一倍的训练次数,但仍未能产生长时程突触增强(LTP),相应地条件反应也未能建立;部分动物(2/6)的突触效应不受影响,能产生LTP,并相应地条件反应亦能建立,且 LTP 发展超前于条件性行为的发展。在条件反应巩固后给大鼠一次电休克,可使它的海马 CA_3区的习得性 LIP—时性地下降,条件反应率也相应地下降。经1—4h,LTP 完全恢复,条件反应率也相应地恢复到电休克前的水平。表明习得性 LTP 受影响,可使条件性行为随之相应改变。它为论证习得性 LTP 可能是记忆的神经基础之一提供了进一步的证据。 相似文献
9.
海马突触传递长时程增强效应中的逆行信使 总被引:5,自引:0,他引:5
海马突触传递长时程增强现象的突触机制研究取得了许多重要进展,其中特别是发展了突触前膜与突触后膜功能双向调控的概念,即观察了逆行信使的存在和作用,这对于理解和阐明学习、记忆的机制具有重要的理论意义。本文结合笔者的工作,重点介绍一氧化氮等所谓的逆行信使在突触传递长时程增强中的功能。 相似文献
10.
11.
12.
突触传递的长时程抑制(long-term depression,LTD)和长时程增强(long term-potentiation,LTP)是突触可塑性的两种重要形式,并且与学习记忆密切相关。本文探讨Sprague-Dawley(SD)大鼠在海马齿状回区(dentate gyrus,DG)注射36h孵育形成的寡聚体Aβ1-4230d后,在体海马前穿通纤维-齿状回通路(perforant path-dentate gyrus pathway,PP-DG)的突触可塑性和空间记忆能力的变化。2.5月龄SD大鼠随机分为寡聚体Aβ1-42注射组[即阿尔茨海默病(Alzheimer’s disease,AD)模型组,n=12]和正常对照组(n=12),分别在双侧海马DG区注射5μg寡聚体Aβ1-42或生理盐水。应用Morris水迷宫检测大鼠空间记忆能力。同时运用神经电生理在体胞外记录技术,检测寡聚体Aβ1-42引起的海马双脉冲易化(paired pulse facilitation,PPF)、LTD、LTP等突触可塑性形式的变化。结果显示:(1)AD模型组大鼠空间记忆能力下降(P<0.05);(2)寡聚体Aβ1-42降低... 相似文献
13.
阿尔茨海默病(alzheimer disease,AD)是一种神经退行性疾病,β-淀粉样蛋白(amyloid-β,Aβ)被认为是其发病的中心分子.体内Aβ产生和清除的平衡在阿尔茨海默病的病理过程中扮演了重要的角色.人体清除Aβ的机制包括多种途径:通过血脑屏障、血脑脊液屏障等转运出脑;在脑脊液及血液等外周系统降解;在脑内通过水解等方式清除.细胞外Aβ既可在胞外通过水解酶的降解作用被降解,也可被吞噬入细胞后通过自噬作用、泛素-蛋白酶体途径被最终水解.能够增强体内固有的Aβ清除机制的药物和方法将对AD的治疗起到积极作用. 相似文献
14.
15.
长时程增强诱导和维持过程中海马CA1区神经细胞粘附分子蛋白水平与mRNA表达的变化 总被引:2,自引:0,他引:2
既往研究发现,神经细胞粘附分子(neural cell adhesion molecules,NCAM)对海马CA1区突触传递长时程增强(longterm potentiation,LTP)的诱导和维持极为关键。本文采用原位杂交法和Western blot法,观察了大鼠海马腑片LTP诱导和维持过程中NCAM mRNA和蛋白水平的动态变化过程。结果显示,强直刺激诱发fEPSP斜率升高10 min时,海马CA1区NCAM mRNA染色阳性神经元数量显著增加(76.6±11.5个),NCAM蛋白水平亦明显升高(7.190±0.64任意单位/50μg蛋白)。强直刺激诱发fEPSP斜率升高1 h时,NCAM mRNA染色阳性神经元数量为73.3±14.0个,NCAM蛋白量为9.031±0.71任意单位/50 μg蛋白;与强直刺激后10 min比较,NCAM mRNA表达无显著变化,而NCAM蛋白水平变化明显。NMDA受体特异阻断剂AP-5在损害LTP的同时,显著抑制NCAM mRNA和蛋白的增加。实验结果表明,在大鼠海马LTP诱导和维持过程中,NCAM mRNA增强的表达相对稳定,而NCAM蛋白水平呈现先低后高的变化。 相似文献
16.
经强噪声重复暴露(96 dB,2h/d,25 d)后,幼年和老年大鼠在条件反应的建立和再建立过程中,其海马CA_3区习得性长时程突触增强(LTP)的发展均受到明显阻抑,相应地动物达到学会标准需更多的训练。但幼年鼠受阻抑的程度更为严重。对习得性LTP的消退则在幼年和老年大鼠均无明显影响。本研究从突触功能的可塑性方面揭示幼年功物特别容易受到强噪声重复暴露的危害,提示应重视环境噪声对人类婴幼儿脑功能的损害作用的研究。 相似文献
17.
低频刺激诱发海马突触传递去长时程增强的特性研究 总被引:1,自引:0,他引:1
目的和方法:以频率为1、3或5Hz,脉冲数为300或900,与高频刺激(HFS)时间间隔是20min或100min的低频刺激(LFS)作用于大鼠海马脑片,分别观察其对CA1区突触传递去长时程增强(DP)形成的影响。结果:HFS(100Hz,100脉冲的串刺激两串,串间隔30s)可诱发突触传递效率的长时程增强(LTP)。HFS经20min给予3Hz900脉冲的LFS可翻转LTP,产生DP,该作用可为NMDA受体阻断剂AP5(50μmol/L)所阻断,1Hz、5Hz、低脉冲数或与HFS时间间隔长的LFS,其诱发DP的效率减弱。结论:诱发海马CA1区DP的产生,对LFS的参数有较强的依从性。该作用可能是通过激活NMDA受体而实现的。 相似文献
18.
作为探索大脑学习和记忆功能的重要模式 ,长时程增强 (longtermpotentiation ,LTP)在研究发育过程中的神经回路形成(neuralcircuitformation)和精致化 (Refinement)具有重要作用。一般认为 ,钙 钙调蛋白依赖性蛋白激酶II(calcium/calmodulindependentproteinkinaseII ,CaMKII)和促细胞分裂剂激活性蛋白激酶 (mitogen -activatedproteinkinase,MAPK)家族分子在诱导海马神经元LTP过程中起关键作用。美国斯坦福大学学者RobertC .Malenka最近证实 :新生期啮齿类动物海马神经元却并非如此。他们于出生后 9天内的小鼠海马CA1区锥体细胞 … 相似文献
19.
长时程增强(LTP)是突触传递功能可塑性的重要表现形式,是大脑内信息储存和记忆形成的细胞机制。近年来的研究资料表明,LTP诱导后,神经元的某些活动可使其翻转(LTP reversal),或称为去强化(depotentiation)。LTP翻转在一些生理功能的完成中具有重要作用,早时相LTP翻转参与了神经环路的细化过程,而晚时相LTP翻转可能是消除有害的或病理性记忆(如痛觉记忆、成瘾记忆)的重要机制之一。因而近年来LTP翻转研究成为神经科学领域的研究热点。本文对引起LTP翻转的条件与机制方面的研究资料予以综述。 相似文献
20.
目的观察人参皂甙Rb1对阿尔茨海默病(AD)模型大鼠学习记忆能力及海马结构β-淀粉样蛋白表达的影响。方法动物分3组:对照组、模型组及治疗组,用D半乳糖联合三氯化铝建立AD大鼠模型,治疗组在造模后给予人参皂甙Rb1腹腔注射4周;采用Morris水迷宫测试大鼠的空间学习记忆能力,用免疫组织化学方法观察海马结构β-淀粉样蛋白的表达。结果与对照组相比,模型组大鼠各时间段的逃避潜伏期均显著延长(P〈0.01),海马CA1、CA3区及齿状回β-淀粉样蛋白表达的阳性细胞数明显增多(P〈0.01);治疗组大鼠的逃避潜伏期较模型组明显缩短(P〈0.01),海马CA1、CA3区及齿状回的β-淀粉样蛋白阳性细胞数显著减少(P〈0.01)。结论人参皂甙Rb1对AD模型大鼠学习记忆损害具有明显改善作用,其机制可能与人参皂甙Rb1减少海马结构β-淀粉样蛋白的表达有关。 相似文献