首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The endogenous retrovirus (ERV) is one kind ofretroviruses that integrated in the genome in the formof provirus and replicates with the proliferation of hostcells. The ERV may play a significant role in the evo-lution, pathology and physiology of animals[1]. Now,proviral sequences of ERV have been found in the ge-nome of many vertebrates, and the release of virionshas also been detected both in vivo and in vitro. Porcine endogenous retrovirus (PERV) embeddedin the genome of pigs belo…  相似文献   

2.
Endogenous retroviruses of swine are a concern in the use of pig-derived tissues for xenotransplantation into humans. The nucleotide sequence of porcine endogenous retrovirus taken from lymphocytes of miniature swine (PERV-MSL) has been characterized. PERV-MSL is a type C retrovirus of 8,132 bp with the greatest nucleic acid sequence identity to gibbon ape leukemia virus and murine leukemia virus. Constitutive production of PERV-MSL RNA has been detected in normal leukocytes and in multiple organs of swine. The copy numbers of full-length PERV sequences per genome (approximately 8 to 15) vary among swine strains. The open reading frames for gag, pol, and env in PERV-MSL have over 99% amino acid sequence identity to those of Tsukuba-1 retrovirus and are highly homologous to those of endogenous retrovirus of cell line PK15 (PK15-ERV). Most of the differences in the predicted amino acid sequences of PK15-ERV and PERV-MSL are in the SU (cell attach- ment) region of env. The existence of these PERV clones will enable studies of infection by endogenous retroviruses in xenotransplantation.  相似文献   

3.
Here, we report the quantification of porcine endogenous retrovirus (PERV) copy numbers using real time PCR. After generating standard curves using plasmid DNA, copy numbers were determined for PERV pol and for a housekeeping gene, porcine estrogen receptor2 (ER2) with the same amount of genomic DNA. Using this method, we examined 6 pig breeds in Korea including two breeds of miniature pig, one domestic pig from Jeju, and imported pig breeds, Duroc, Landrace, and Yorkshire. All breeds showed PERV copy numbers ranging from 9 to 50. This method will be useful for monitoring of PERVs in a porcine xenograft.  相似文献   

4.
Lee D  Lee J  Yoon JK  Kim NY  Kim GW  Park C  Oh YK  Kim YB 《Animal biotechnology》2011,22(4):175-180
Here, we report the quantification of porcine endogenous retrovirus (PERV) copy numbers using real time PCR. After generating standard curves using plasmid DNA, copy numbers were determined for PERV pol and for a housekeeping gene, porcine estrogen receptor2 (ER2) with the same amount of genomic DNA. Using this method, we examined 6 pig breeds in Korea including two breeds of miniature pig, one domestic pig from Jeju, and imported pig breeds, Duroc, Landrace, and Yorkshire. All breeds showed PERV copy numbers ranging from 9 to 50. This method will be useful for monitoring of PERVs in a porcine xenograft.  相似文献   

5.
6.
The pig appears to be the most promising animal donor of organs for use in human recipients. Among several types of pathogens found in pigs, one of the greatest problems is presented by porcine endogenous retroviruses (PERVs). Screening of the source pig herd for PERVs should include analysis of both PERV DNA and RNA. Therefore, the present study focuses on quantitative analysis of PERVs in different organs such as the skin, heart, muscle, and liver and blood of transgenic pigs generated for xenotransplantation. Transgenic pigs were developed to express the human α-galactosidase, the human α-1,2-fucosyltransferase gene, or both genetic modifications of the genome (Lipinski et al., Medycyna Wet 66:316–322, 2010; Lipinski et al., Ann Anim Sci 12:349–356, 2012; Wieczorek et al., Medycyna Wet 67:462–466, 2011). The copy numbers of PERV DNA and RNA were evaluated using real-time Q-PCR and QRT-PCR, respectively. Comparative analysis of all PERV subtypes revealed the following relationships: PERV A > PERV B > PERV C. PERV A and B were found in all samples, whereas PERV C was detected in 47 % of the tested animals. The lowest level of PERV DNA was shown in the muscles for PERV A and B and in blood samples for PERV C. The lowest level of PERV A RNA was found in the skin, whereas those of PERV B and C RNA were found in liver specimens. Quantitative analysis revealed differences in the copy number of PERV subtypes between various organs of transgenic pigs generated for xenotransplantation. Our data support the idea that careful pig selection for organ donation with low PERV copy number may limit the risk of retrovirus transmission to the human recipients.  相似文献   

7.
为了解我国家猪猪内源性逆转录病毒(PERV)生物学的基本特征,为评价应用猪器官、组织、细胞进行猪一人间跨种移植的生物安全性提供理论基础。本文采用PCR方法调查12个家猪品系外周血白细胞DNA基因组PERV的生物学特征,并应用SS-SSCP、RFLP-PCR方法分析PERV基因片段的差异性及采用RT-PCR方法和半定量方法分析2个品系小型猪13种组织PERV表达的差异。结果表明12个品系猪外周血白细胞DNA基因组普遍存在PERV-A、-B基因序列,未发现单链构象多态性;部分品系猪PER Venv基因序列片段存在限制性片段长度多态性。分析2个品系13种组织均表达PERV-A、-B、-C,肾、淋巴结、肝为高表达器官,胰腺和脑组织为低表达器官,PERV-C mRNA丰度明显低于PERV-A、-B mRNA。PERV env存在限制性片段长度多态性、PERV-A存在碱基缺失和错配的现象,有可能在猪异种移植中构成PERV感染的潜在危险性,这是在猪异种移植过程中值得高度关注的问题。  相似文献   

8.
In view of the concern over potential infection hazards in the use of porcine tissues and organs for xenotransplantation to humans, we investigated the diversity of porcine endogenous retrovirus (PERV) genomes in the DNA of domestic pigs and related species. In addition to the three known envelope subgroups of infectious gamma retroviruses (PERV-A, -B, and -C), classed together here as PERV group gamma 1, four novel groups of gamma retrovirus (gamma 2 to gamma 5) and four novel groups of beta retrovirus (beta 1 to beta 4) genomes were detected in pig DNA using generic and specific PCR primers. PCR quantification indicated that the retroviral genome copy number in the Landrace x Duroc F(1) hybrid pig ranged from 2 (beta 2 and gamma 5) to approximately 50 (gamma 1). The gamma 1, gamma 2, and beta 4 genomes were transcribed into RNA in adult kidney tissue. Apart from gamma 1, the retroviral genomes are not known to be infectious, and sequencing of a small number of amplified genome fragments revealed stop codons in putative open reading frames in several cases. Analysis of DNA from wild boar and other species of Old World pigs (Suidae) and New World peccaries (Tayassuidae) showed that one retrovirus group, beta 2, was common to all species tested, while the others were present among all Old World species but absent from New World species. The PERV-C subgroup of gamma1 genomes segregated among domestic pigs and were absent from two African species (red river hog and warthog). Thus domestic swine and their phylogenetic relatives harbor multiple groups of hitherto undescribed PERV genomes.  相似文献   

9.
猪作为异种器官移植供体的研究进展   总被引:8,自引:0,他引:8  
异种器官移植是现代和未来医学的重要研究领域之一,转基因猪有望为人类提供移植所需的器官,本对猪作为异种器官移植供体的可能性,移植引起的免疫排斥反应及病毒感染等问题进行了综述和讨论。  相似文献   

10.
Xenotransplantation shows great promise for providing a virtually limitless supply of cells, tissues, and organs for a variety of therapeutical procedures. However, the potential of porcine endogenous retrovirus (PERV) as a human-tropic pathogen, particularly as a public health risk, is a major concern for xenotransplantation. This study focus on the detection of copy number in various tissues and organs in Banna Minipig Inbreed (BMI) from 2006 to 2007 in West China Hospital, Sichuan University. Real-time quantitative polymerase chain reaction (SYBR Green I) was performed in this study. The results showed that the pol gene had the most copy number in tissues compared with gag, envA, and envB. Our experiment will offer a rapid and accurate method for the detection of the copy number in various tissues and was especially suitable for the selection of tissues or organs in future clinical xenotransplantation.  相似文献   

11.
Recent interest in the use of porcine organs, tissues, and cells for xenotransplantation to humans has highlighted the need to characterize the properties of pig endogenous retroviruses (PERVs). Analysis of a variety of pig cells allowed us to isolate and identify three classes of infectious type C endogenous retrovirus (PERV-A, PERV-B, and PERV-C) which have distinct env genes but have highly homologous sequences in the rest of the genome. To study the properties of these env genes, expression plasmids for the three env genes were constructed and used to generate retrovirus vectors bearing corresponding Env proteins. Host range analyses by the vector transduction assay showed that PERV-A and PERV-B Envs have wider host ranges, including several human cell lines, compared with PERV-C Env, which infected only two pig cell lines and one human cell line. All PERVs could infect pig cells, indicating that the PERVs have a potential to replicate in pig transplants in immunosuppressed patients. Receptors for PERV-A and PERV-B were present on cells of some other species, including mink, rat, mouse, and dog, suggesting that such species may provide useful model systems to study infection and pathogenicity of PERV. In contrast, no vector transduction was observed on nonhuman primate cell lines, casting doubt on the utility of nonhuman primates as models for PERV zoonosis. Interference studies showed that the three PERV strains use receptors distinct from each other and from a number of other type C mammalian retroviruses.Pig-to-human xenotransplantation has the potential to alleviate the shortage of allogeneic organs for transplantation (1, 25). In addition, it may also allow the development of novel therapies by providing unlimited supplies of cells and tissues (9, 11, 13, 18). Recently, substantial progress has been made in overcoming immunological barriers to cross-species transplantation (25, 27). At the same time, however, serious concerns that zoonotic infections might occur as a result of xenotransplantation have been expressed (1, 6, 30). Our report that an established pig cell line produces a porcine endogenous retrovirus (PERV) that can infect human cells fueled these concerns (23). Subsequently, the isolation of human tropic PERV from stimulated miniswine peripheral blood lymphocytes (38) has shown that normal pig cells can also produce potentially hazardous virus. PERVs may be difficult to eliminate from donor animals because multiple copies of PERV genomes are present in normal pig genomes (2, 16, 23). PERV infection may have serious impact on the health of not only transplant recipients but also the human population at large, if spread of an undetected infectious agent into the community were to take place (3, 31). To assess the risk posed by the PERVs for pig-to-human transplantation, a greater understanding of the properties of the PERVs is required.Sequence analyses indicate that the infectious PERVs are closely related to one another in their gag and pol genes, with maximum amino acid divergence of around 5% (2, 16a, 23). The PERVs are members of the mammalian type C retrovirus genus showing closest homology to the gibbon ape leukemia virus (GALV) pol gene, with about 70% amino acid identity, and 60 to 70% identity to murine leukemia viruses (MLV). However, three distinct env genes have now been identified in PERV clones. Two of these env genes, PERV-A and PERV-B, were cloned from human 293 cells infected with PK15 virus (16). The third distinct class of PERV env gene, here designated PERV-C, was reported as a part of a full-length PERV genome isolated from miniature swine lymphocytes (PERV-MSL) and from a swine lymphoma (PERV-Tsukuba-1) (2, 32). The three types show marked differences in the VRA, VRB, and PRO regions of SU surface glycoprotein (2, 16). Differences in these regions determine the host range specificity of the different classes of MLV (4, 5). These observations suggest that the PERVs belong to three distinct classes with different host range specificities. To test this idea, the functions of the three types of PERV env gene were examined and correlated to production, infection, and replication of PERVs in cell culture. Recombinant retrovirus vectors bearing PERV Env proteins were developed and their host ranges, cell tropism, and interference with each other as well as with other type C retroviruses were examined. The results of these experiments are the subject of this report.  相似文献   

12.
It has been shown that porcine endogenous retrovirus (PERV) can infect human cells, indicating that PERV transmission poses a serious concern in pig-to-human xenotransplantation. A number of recent studies have reported on retrovirus interference by antiviral proteins. The most potent antiviral proteins are members of the APOBEC family of cytidine deaminases, which are involved in defense against retroviral attack. These proteins are present in the cytoplasm of mammalian cells and inhibit retroviral replication. To evaluate the inhibition of PERV transmission by human APOBEC3 proteins, we co-transfected 293T cells with a PERV molecular clone and human APOBEC3F or APOBEC3G expression vectors, and monitored PERV replication competency using a quantitative analysis of PERV pol genes. The replication of PERVs in cells co-expressing human APOBEC3s was reduced by 60–90% compared with PERV-only control. These results suggest that human APOBEC3G and APOBEC3F might serve a potential barrier function against PERV transmission in xenotransplantation.  相似文献   

13.
The pig (Sus scrofa) is a potential organ donor for man but porcine endogenous retroviruses (PERVs) represent an important concern for patients, and identification or engineering of PERV-free pigs suitable for xenotransplantation is a major undertaking. Consequently, studies of variability in pigs for the presence of PERVs at specific loci are a prerequisite. We identified genomic flanking sequences of two PERVs cloned in bacterial artificial chromosomes, a replication-competent PERV-A at locus 1q2.4 and a defective PERV-B at locus 7p1.1–2. PERV-A is embedded in the second repeat of a tandem of eight 190 bp repeats. A short duplicated 4 bp cellular motif, AGAC, was found at each flank of PERV-A and a degenerate 4 bp motif was found for PERV-B. At each locus, the PERV flanks matched expressed sequence tags available in public databases. Primer pairs were designed to amplify either genomic flanks or PERV-genomic junctions. Polymerase chain reaction screening was performed on pigs from 11 distinct Chinese breeds and from the European Large White breed. PERV-B at locus 7p1.1–2 was detected in all animals whereas the presence of PERV-A at locus 1q2.4 was variable. Our results suggest that a genetic selection can be designed to identify animals lacking a potentially active PERV at a specific locus and that Chinese and European pig breeds represent large biodiversity reservoirs to explore. Our results point also to the existence of PERVs that might be fixed in the pig genome, and that might not be eliminated by classical genetic selection.Accession numbers: Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under Accession numbers AY160111–AY160114  相似文献   

14.
15.
猪皮肤成纤维细胞PERV体外和体内感染性的研究   总被引:1,自引:0,他引:1  
为了解猪皮肤成纤维细胞PERV在体外和体内的感染性,通过建立猪皮肤成纤维细胞系,将所建细胞系与人胚胎肾293细胞体外共培养,并移植于严重联合免疫缺陷鼠(SCID鼠)皮下进行猪皮肤成纤维细胞PERV的体外和体内感染性实验。结果表明,猪皮肤成纤维细胞与人胚胎肾细胞共培养过程中,猪内源性逆转录病毒感染人胚胎肾细胞,进一步证实和拓宽了猪细胞PERV感染人细胞的范畴;猪皮肤成纤维细胞移植SCID鼠皮下后,导致SCID鼠发生猪细胞微嵌合(78.57%)和PERV在体内感染(85.71%)并且波及远离移植部位的多种组织或器官,但是并未检测出SCID鼠组织中表达PERV env RNA。这就证实了猪皮肤成纤维细胞PERV的体外感染性和在小鼠体内的感染性,但未能找到PERV在体内活跃复制的明显证据。因而,在猪异种移植过程中PERV传播的潜在危险仍然是必须高度重视的生物安全性问题。  相似文献   

16.
Porcine endogenous retrovirus (PERV), porcine cytomegalovirus (PCMV), and porcine lymphotropic herpesvirus (PLHV) are common porcine viruses that may be activated with immunosuppression for xenotransplantation. Studies of viral replication or transmission are possible due to prolonged survival of xenografts in baboon recipients from human decay-accelerating factor transgenic or alpha-1,3-galactosyltransferase gene knockout miniature swine. Ten baboons underwent xenotransplantation with transgenic pig organs. Graft survival was 32 to 179 days. Recipient serial samples of peripheral blood mononuclear cells (PBMC) and plasma were analyzed for PCMV, PERV, and PLHV-1 nucleic acids and viral replication using quantitative PCR assays. The PBMC contained PERV proviral DNA in 10 animals, PLHV-1 DNA in 6, and PCMV in 2. PERV RNA was not detected in any PBMC or serum samples. Plasma PLHV-1 DNA was detected in one animal. Pig cell microchimerism (pig major histocompatibility complex class I and pig mitochondrial cytochrome c oxidase subunit II sequences) was present in all recipients with detectable PERV or PLHV-1 (85.5%). Productive infection of PERV or PLHV-1 could not be demonstrated. The PLHV-1 viral load did not increase in serum over time, despite prolonged graft survival and pig cell microchimerism. There was no association of viral loads with the nature of exogenous immune suppression. In conclusion, PERV provirus and PLHV-1 DNA were detected in baboons following porcine xenotransplantation. Viral detection appeared to be due to persistent pig cell microchimerism. There was no evidence of productive infection in recipient baboons for up to 6 months of xenograft function.  相似文献   

17.

Background

Xenotransplantation has drawn increased attention in recent years as a potential solution to the scarcity of human source donor organs. Researchers have highlighted the need to characterize the influence of porcine endogenous retroviruses (PERV) in xenotransplantation. Screening and analyzing the presence and subtype of PERV in donor source animal breeds could provide basic parameters to evaluate the biological safety of xenotransplantation from pigs to humans. We bred a new miniature porcine herd (XENO-1) after decades of investigation, the herd was purpose bred to produce a potential donor animal source for xenotransplantation. To this end we studied the animals’ PERV expression characteristics.

Methods

We randomly selected 37 animals of the herd, PCR and RT-PCR based on specific primers were utilized to determine their PERV viral subtype. High fidelity PCR and restriction enzyme digestion were employed for variants detection. To thoroughly understand the PERV expression pattern, quantitative PCR was applied to measure mRNA expression levels in different tissues, At last, transfection capacity was assessed using a in vitro co-culture system.

Results

Our results revealed that the XENO-1 herd was free of PERV-C and exhibited low levels of PERVs in different tissues compared to commercial pig (landrace). The XENO-1 herd showed unique variants of A/B recombination. In addition, even though there were A/B variants in the XENO-1 herd, co-culturing revealed no evidence of PERV transmission from XENO-1 tissue to human cells.

Conclusion

Overall, Our results displayed an unique PERV expression pattern in a new pig herd and demonstrated its non-transfection capacity in vitro. Data in the research indicate that XENO-1 animals can serve as a better potential donor source for xenotransplantation.
  相似文献   

18.
The human APOBEC3G protein is an innate anti-viral factor that can dominantly inhibit the replication of some endogenous and exogenous retroviruses. The prospects of purposefully harnessing such an anti-viral defense are under investigation. Here, long-term co-culture experiments were used to show that porcine endogenous retrovirus (PERV) transmission from pig to human cells is reduced to nearly undetectable levels by expressing human APOBEC3G in virus-producing pig kidney cells. Inhibition occurred by a deamination-independent mechanism, likely after particle production but before the virus could immortalize by integration into human genomic DNA. PERV inhibition did not require the DNA cytosine deaminase activity of APOBEC3G and, correspondingly, APOBEC3G-attributable hypermutations were not detected. In contrast, over-expression of the sole endogenous APOBEC3 protein of pigs failed to interfere significantly with PERV transmission. Together, these data constitute the first proof-of-principle demonstration that APOBEC3 proteins can be used to fortify the innate anti-viral defenses of cells to prevent the zoonotic transmission of an endogenous retrovirus. These studies suggest that human APOBEC3G-transgenic pigs will provide safer, PERV-less xenotransplantation resources and that analogous cross-species APOBEC3-dependent restriction strategies may be useful for thwarting other endogenous as well as exogenous retrovirus infections.  相似文献   

19.
The possibility of preventing the transmission of porcine endogenous retrovirus (PERV) to human cells using short interfering RNAs (siRNA) was investigated. The siRNA for the p30 of PERV gag region was cloned into pSUPER, the polymerase-III H1-RNA gene promoter. A green fluorescence protein (GFP) was also cloned into pSUPER to establish pSXGH. Pig endothelial cells (PEC) were transduced with the LacZ gene by pseudotype infection, and infected with PERV subtype B, resulting in the formation of PEC(LacZ)/PB. The PEC(LacZ)/PB was next transfected with pSXGH-siRNA. The expression of siRNA was provisionally checked by determining the level of expression of GFP. Culture supernatants of infected cells were then inoculated into HEK293 cells. The siRNA clearly destroyed the PERV infectivity of PEC(LacZ)/PB in both transient cell lines and stable clones. Moreover, the decreased levels of mRNA and gag protein were evidenced in the stable clones by real-time PCR and Western blotting, respectively. The final goal of our study was to establish a transgenic pig expressing the siRNA for PERV. The results suggest that siRNA represents a novel approach for controlling PERV infections in clinical xenotransplantation.  相似文献   

20.
The significance of the envelope glycoprotein in the transmission of pig endogenous retrovirus (PERV) to human cells was investigated. Pig endothelial cells (PEC) were transduced with the LacZ gene by a pseudotype infection and then infected with PERV subtype B. Culture supernatants of the infected PEC previously incubated with several types of drugs were inoculated into HEK293 cells. The inoculated cells were then stained and the number of LacZ-positive foci was counted. PERV from tunicamycin treated PEC was not transmitted to human cells, indicating the importance of N-linked sugars in this process. Moreover, while inhibition of the terminal alpha-glucose residues from the precursor N-glycan by castanospermine and 1-deoxynojirimycin attenuated PERV infectivity, the mannosidase inhibitors, 1-deoxymannojirimycin and swainsonine, upregulated the infectivity. In addition, treatment with alpha-mannosidase and incubation with concanavalin A completely abrogated the transmission of PERV to HEK293. These data imply that the high-mannose type of N-glycan plays a key role in PERV infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号