首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ensemble method for gene discovery based on DNA microarray data   总被引:9,自引:0,他引:9  
DNA microarrays are now able to measure the expressions of thousands of genes simultaneously. These measurements or gene profiling provides a snapshot?of life that maps to a cross section of ge-netic activities in a four-dimension space of time and the biological entity. Although recent microarray ex-periments[1, 2] hold the promise of the innovative tech-nology to cast new insights onto discovery of secrets of life, development of powerful and efficient analysis strategies for microarray dat…  相似文献   

2.
MOTIVATION: Class distinction is a supervised learning approach that has been successfully employed in the analysis of high-throughput gene expression data. Identification of a set of genes that predicts differential biological states allows for the development of basic and clinical scientific approaches to the diagnosis of disease. The Independent Consistent Expression Discriminator (ICED) was designed to provide a more biologically relevant search criterion during predictor selection by embracing the inherent variability of gene expression in any biological state. The four components of ICED include (i) normalization of raw data; (ii) assignment of weights to genes from both classes; (iii) counting of votes to determine optimal number of predictor genes for class distinction; (iv) calculation of prediction strengths for classification results. The search criteria employed by ICED is designed to identify not only genes that are consistently expressed at one level in one class and at a consistently different level in another class but identify genes that are variable in one class and consistent in another. The result is a novel approach to accurately select biologically relevant predictors of differential disease states from a small number of microarray samples. RESULTS: The data described herein utilized ICED to analyze the large AML/ALL training and test data set (Golub et al., 1999, Science, 286, 531-537) in addition to a smaller data set consisting of an animal model of the childhood neurodegenerative disorder, Batten disease, generated for this study. Both of the analyses presented herein have correctly predicted biologically relevant perturbations that can be used for disease classification, irrespective of sample size. Furthermore, the results have provided candidate proteins for future study in understanding the disease process and the identification of potential targets for therapeutic intervention.  相似文献   

3.
4.
5.
6.
Genome-scale microarray experiments for comparative analysis of gene expressions produce massive amounts of information. Traditional statistical approaches fail to achieve the required accuracy in sensitivity and specificity of the analysis. Since the problem can be resolved neither by increasing the number of replicates nor by manipulating thresholds, one needs a novel approach to the analysis. This article describes methods to improve the power of microarray analyses by defining internal standards to characterize features of the biological system being studied and the technological processes underlying the microarray experiments. Applying these methods, internal standards are identified and then the obtained parameters are used to define (i) genes that are distinct in their expression from background; (ii) genes that are differentially expressed; and finally (iii) genes that have similar dynamical behavior.  相似文献   

7.
Li X  Rao S  Wang Y  Gong B 《Nucleic acids research》2004,32(9):2685-2694
Current applications of microarrays focus on precise classification or discovery of biological types, for example tumor versus normal phenotypes in cancer research. Several challenging scientific tasks in the post-genomic epoch, like hunting for the genes underlying complex diseases from genome-wide gene expression profiles and thereby building the corresponding gene networks, are largely overlooked because of the lack of an efficient analysis approach. We have thus developed an innovative ensemble decision approach, which can efficiently perform multiple gene mining tasks. An application of this approach to analyze two publicly available data sets (colon data and leukemia data) identified 20 highly significant colon cancer genes and 23 highly significant molecular signatures for refining the acute leukemia phenotype, most of which have been verified either by biological experiments or by alternative analysis approaches. Furthermore, the globally optimal gene subsets identified by the novel approach have so far achieved the highest accuracy for classification of colon cancer tissue types. Establishment of this analysis strategy has offered the promise of advancing microarray technology as a means of deciphering the involved genetic complexities of complex diseases.  相似文献   

8.
This paper studies the problem of building multiclass classifiers for tissue classification based on gene expression. The recent development of microarray technologies has enabled biologists to quantify gene expression of tens of thousands of genes in a single experiment. Biologists have begun collecting gene expression for a large number of samples. One of the urgent issues in the use of microarray data is to develop methods for characterizing samples based on their gene expression. The most basic step in the research direction is binary sample classification, which has been studied extensively over the past few years. This paper investigates the next step-multiclass classification of samples based on gene expression. The characteristics of expression data (e.g. large number of genes with small sample size) makes the classification problem more challenging. The process of building multiclass classifiers is divided into two components: (i) selection of the features (i.e. genes) to be used for training and testing and (ii) selection of the classification method. This paper compares various feature selection methods as well as various state-of-the-art classification methods on various multiclass gene expression datasets. Our study indicates that multiclass classification problem is much more difficult than the binary one for the gene expression datasets. The difficulty lies in the fact that the data are of high dimensionality and that the sample size is small. The classification accuracy appears to degrade very rapidly as the number of classes increases. In particular, the accuracy was very low regardless of the choices of the methods for large-class datasets (e.g. NCI60 and GCM). While increasing the number of samples is a plausible solution to the problem of accuracy degradation, it is important to develop algorithms that are able to analyze effectively multiple-class expression data for these special datasets.  相似文献   

9.
A framework for gene expression analysis   总被引:1,自引:0,他引:1  
  相似文献   

10.
The local false discovery rate (LFDR) estimates the probability of falsely identifying specific genes with changes in expression. In computer simulations, LFDR <10% successfully identified genes with changes in expression, while LFDR >90% identified genes without changes. We used LFDR to compare different microarray experiments quantitatively: (i) Venn diagrams of genes with and without changes in expression, (ii) scatter plots of the genes, (iii) correlation coefficients in the scatter plots and (iv) distributions of gene function. To illustrate, we compared three methods for pre-processing microarray data. Correlations between methods were high (r = 0.84–0.92). However, responses were often different in magnitude, and sometimes discordant, even though the methods used the same raw data. LFDR complements functional assessments like gene set enrichment analysis. To illustrate, we compared responses to ultraviolet radiation (UV), ionizing radiation (IR) and tobacco smoke. Compared to unresponsive genes, genes responsive to both UV and IR were enriched for cell cycle, mitosis, and DNA repair functions. Genes responsive to UV but not IR were depleted for cell adhesion functions. Genes responsive to tobacco smoke were enriched for detoxification functions. Thus, LFDR reveals differences and similarities among experiments.  相似文献   

11.
Pathway analysis using random forests classification and regression   总被引:3,自引:0,他引:3  
MOTIVATION: Although numerous methods have been developed to better capture biological information from microarray data, commonly used single gene-based methods neglect interactions among genes and leave room for other novel approaches. For example, most classification and regression methods for microarray data are based on the whole set of genes and have not made use of pathway information. Pathway-based analysis in microarray studies may lead to more informative and relevant knowledge for biological researchers. RESULTS: In this paper, we describe a pathway-based classification and regression method using Random Forests to analyze gene expression data. The proposed methods allow researchers to rank important pathways from externally available databases, discover important genes, find pathway-based outlying cases and make full use of a continuous outcome variable in the regression setting. We also compared Random Forests with other machine learning methods using several datasets and found that Random Forests classification error rates were either the lowest or the second-lowest. By combining pathway information and novel statistical methods, this procedure represents a promising computational strategy in dissecting pathways and can provide biological insight into the study of microarray data. AVAILABILITY: Source code written in R is available from http://bioinformatics.med.yale.edu/pathway-analysis/rf.htm.  相似文献   

12.
Gene expression is a dynamic process where thousands of components interact dynamically in a complex way. A major goal in systems biology/medicine is to reconstruct the network of components from microarray data. Here, we address two key aspects of network reconstruction: (i) ergodicity supports the interpretation of the measured data as time averages and (ii) confounding is an important aspect of network reconstruction. To elucidate these aspects, we explore a data set of 214 lymphoma patients with translocated or normal MYC gene. MYC (c-Myc) translocations to immunoglobulin heavy-chain (IGH@) or light-chain (IGK@, IGL@) loci lead to c-Myc overexpression and are widely believed to be the crucial initiating oncogenic events. There is a rich body of knowledge on the biological implications of the different translocations. In the context of these data, the article reflects the relationship between the biological knowledge and the results of formal statistical estimates of gene interaction networks. The article identifies key steps to provide a trustworthy biological feature validation: (i) analysing a medium-sized network as a subnet of a more extensive environment to avoid bias by confounding, (ii) the use of external data to demonstrate the stability and reproducibility of the derived structures, (iii) a systematic literature review on the relevant issue, (iv) use of structured knowledge from databases to support the derived findings and (v) a strategy for biological experiments derived from the findings in steps (i-iv).  相似文献   

13.
We aim at finding the smallest set of genes that can ensure highly accurate classification of cancers from microarray data by using supervised machine learning algorithms. The significance of finding the minimum gene subsets is three-fold: 1) it greatly reduces the computational burden and "noise" arising from irrelevant genes. In the examples studied in this paper, finding the minimum gene subsets even allows for extraction of simple diagnostic rules which lead to accurate diagnosis without the need for any classifiers, 2) it simplifies gene expression tests to include only a very small number of genes rather than thousands of genes, which can bring down the cost for cancer testing significantly, 3) it calls for further investigation into the possible biological relationship between these small numbers of genes and cancer development and treatment. Our simple yet very effective method involves two steps. In the first step, we choose some important genes using a feature importance ranking scheme. In the second step, we test the classification capability of all simple combinations of those important genes by using a good classifier. For three "small" and "simple" data sets with two, three, and four cancer (sub)types, our approach obtained very high accuracy with only two or three genes. For a "large" and "complex" data set with 14 cancer types, we divided the whole problem into a group of binary classification problems and applied the 2-step approach to each of these binary classification problems. Through this "divide-and-conquer" approach, we obtained accuracy comparable to previously reported results but with only 28 genes rather than 16,063 genes. In general, our method can significantly reduce the number of genes required for highly reliable diagnosis  相似文献   

14.

Background  

This paper presents a unified framework for finding differentially expressed genes (DEGs) from the microarray data. The proposed framework has three interrelated modules: (i) gene ranking, ii) significance analysis of genes and (iii) validation. The first module uses two gene selection algorithms, namely, a) two-way clustering and b) combined adaptive ranking to rank the genes. The second module converts the gene ranks into p-values using an R-test and fuses the two sets of p-values using the Fisher's omnibus criterion. The DEGs are selected using the FDR analysis. The third module performs three fold validations of the obtained DEGs. The robustness of the proposed unified framework in gene selection is first illustrated using false discovery rate analysis. In addition, the clustering-based validation of the DEGs is performed by employing an adaptive subspace-based clustering algorithm on the training and the test datasets. Finally, a projection-based visualization is performed to validate the DEGs obtained using the unified framework.  相似文献   

15.

Background

An important use of data obtained from microarray measurements is the classification of tumor types with respect to genes that are either up or down regulated in specific cancer types. A number of algorithms have been proposed to obtain such classifications. These algorithms usually require parameter optimization to obtain accurate results depending on the type of data. Additionally, it is highly critical to find an optimal set of markers among those up or down regulated genes that can be clinically utilized to build assays for the diagnosis or to follow progression of specific cancer types. In this paper, we employ a mixed integer programming based classification algorithm named hyper-box enclosure method (HBE) for the classification of some cancer types with a minimal set of predictor genes. This optimization based method which is a user friendly and efficient classifier may allow the clinicians to diagnose and follow progression of certain cancer types.

Methodology/Principal Findings

We apply HBE algorithm to some well known data sets such as leukemia, prostate cancer, diffuse large B-cell lymphoma (DLBCL), small round blue cell tumors (SRBCT) to find some predictor genes that can be utilized for diagnosis and prognosis in a robust manner with a high accuracy. Our approach does not require any modification or parameter optimization for each data set. Additionally, information gain attribute evaluator, relief attribute evaluator and correlation-based feature selection methods are employed for the gene selection. The results are compared with those from other studies and biological roles of selected genes in corresponding cancer type are described.

Conclusions/Significance

The performance of our algorithm overall was better than the other algorithms reported in the literature and classifiers found in WEKA data-mining package. Since it does not require a parameter optimization and it performs consistently very high prediction rate on different type of data sets, HBE method is an effective and consistent tool for cancer type prediction with a small number of gene markers.  相似文献   

16.
A hidden-state Markov model for cell population deconvolution.   总被引:1,自引:0,他引:1  
Microarrays measure gene expression typically from a mixture of cell populations during different stages of a biological process. However, the specific effects of the distinct or pure populations on measured gene expression are difficult or impossible to determine. The ability to deconvolve measured gene expression into the contributions from pure populations is critical to maximizing the potential of microarray analysis for investigating complex biological processes. In this paper, we describe a novel approach called the multinomial hidden Markov model (MHMM) that produces: (i) a maximum a posteriori estimate of the fraction represented by each pure population and (ii) gene expression values for each pure population. Our method uses an unsupervised, probabilistic approach for handling missing data points and clusters genes based on expression in pure populations. MHMM, used with several yeast datasets, identified statistically significant temporal dynamics. This method, unlike the linear decomposition models used previously for deconvolution, can extract information from different types of data, does not require a priori identification of pure gene expression, exploits the temporal nature of time series data, and is less affected by missing data.  相似文献   

17.
Discrimination of disease patients based on gene expression data is a crucial problem in clinical area. An important issue to solve this problem is to find a discriminative subset of genes from thousands of genes on a microarray or DNA chip. Aiming at finding informative genes for disease classification on microarray, we present a gene selection method based on the forward variable (gene) selection method (FSM) and show, using typical public microarray datasets, that our method can extract a small set of genes being crucial for discriminating different classes with a very high accuracy almost closed to perfect classification.  相似文献   

18.

Background  

Gene set enrichment analysis (GSEA) is a microarray data analysis method that uses predefined gene sets and ranks of genes to identify significant biological changes in microarray data sets. GSEA is especially useful when gene expression changes in a given microarray data set is minimal or moderate.  相似文献   

19.
Microarrays have been useful in understanding various biological processes by allowing the simultaneous study of the expression of thousands of genes. However, the analysis of microarray data is a challenging task. One of the key problems in microarray analysis is the classification of unknown expression profiles. Specifically, the often large number of non-informative genes on the microarray adversely affects the performance and efficiency of classification algorithms. Furthermore, the skewed ratio of sample to variable poses a risk of overfitting. Thus, in this context, feature selection methods become crucial to select relevant genes and, hence, improve classification accuracy. In this study, we investigated feature selection methods based on gene expression profiles and protein interactions. We found that in our setup, the addition of protein interaction information did not contribute to any significant improvement of the classification results. Furthermore, we developed a novel feature selection method that relies exclusively on observed gene expression changes in microarray experiments, which we call “relative Signal-to-Noise ratio” (rSNR). More precisely, the rSNR ranks genes based on their specificity to an experimental condition, by comparing intrinsic variation, i.e. variation in gene expression within an experimental condition, with extrinsic variation, i.e. variation in gene expression across experimental conditions. Genes with low variation within an experimental condition of interest and high variation across experimental conditions are ranked higher, and help in improving classification accuracy. We compared different feature selection methods on two time-series microarray datasets and one static microarray dataset. We found that the rSNR performed generally better than the other methods.  相似文献   

20.
In this paper, we discuss the properties of biological data and challenges it poses for data management, and argue that, in order to meet the data management requirements for 'digital biology', careful integration of the existing technologies and the development of new data management techniques for biological data are needed. Based on this premise, we present PathCase: Case Pathways Database System. PathCase is an integrated set of software tools for modelling, storing, analysing, visualizing and querying biological pathways data at different levels of genetic, molecular, biochemical and organismal detail. The novel features of the system include: (i) genomic information integrated with other biological data and presented starting from pathways; (ii) design for biologists who are possibly unfamiliar with genomics, but whose research is essential for annotating gene and genome sequences with biological functions; (iii) database design, implementation and graphical tools which enable users to visualize pathways data in multiple abstraction levels and to pose exploratory queries; (iv) a wide range of different types of queries including, 'path' and 'neighbourhood queries' and graphical visualization of query outputs; and (v) an implementation that allows for web (XML)-based dissemination of query outputs (i.e. pathways data in BIOPAX format) to researchers in the community, giving them control on the use of pathways data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号