首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
神经元再生:抑郁症治疗的新策略   总被引:11,自引:0,他引:11  
成年哺乳动物一生中,海马等脑区神经元是可以再生的,而海马脑区神经元再生的减少和增多分别是抑郁症发生和恢复的重要因素。如果神经元再生过程被抑制,在抑郁症的动物模型上抗抑郁剂将会失去其行为学效应。长期给予不同种类的抗抑郁剂可以显著地促进动物海马神经元再生。随着对神经元再生调节机制研究的不断深入,为进一步探讨抑郁症的发生机制,以及发展新型抗抑郁治疗药物提供了新的思路与视角。  相似文献   

2.
丙戊酸钠活化大鼠海马和额叶ERK-1/2信号传导通路   总被引:2,自引:0,他引:2  
为探讨慢性服用丙戊酸钠对中枢神经系统细胞外调控激酶 (ERK) 1/ 2信号传导通路活性的影响 ,阐明丙戊酸钠治疗躁狂抑郁症作用的可能分子机制 ,将 4 0只雄性Wistar大鼠随机分为实验组和对照组 ,每组各 2 0只 .实验组大鼠用含丙戊酸钠的饲料喂养 ,对照组大鼠用常规饲料喂养 ,4周后取大鼠海马和额叶组织制备蛋白质样本 ,蛋白质印迹方法分析海马和额叶组织丝裂原活化的蛋白激酶激酶 (MEK)、ERK 1/ 2、MAPK活化的蛋白激酶 1(RSK1)、cAMP效应元件结合因子 (CREB)的磷酸化水平以及Bcl 2的表达水平 ,电泳迁移率变动分析(EMSA)方法分析海马和额叶组织激活蛋白 1(AP 1)的DNA结合活性 .与对照组比较 ,丙戊酸钠显著增强海马和额叶MEK、ERK 1/ 2、RSK1、CREB和AP1的活性 ,上调海马和额叶Bcl 2的表达 .结果表明 :慢性服用丙戊酸钠激活中枢神经系统ERK 1/ 2信号传导通路、上调中枢神经系统Bcl 2蛋白表达 ,这些作用可能与丙戊酸钠治疗躁狂抑郁症的作用有关  相似文献   

3.
cAMP反应元件结合蛋白:抗抑郁药信号转导通路的交汇点   总被引:3,自引:0,他引:3  
本文综述了参与抑郁症和抗抑郁药作用的三条信号转导通路:环磷酸腺苷(cAMP)通路、丝裂原活化蛋白激酶(MAPK)通路、钙调蛋白激酶(CaMK)通路,以及cAMP反应元件结合蛋白(cAMP response element binding protein, CREB)作为上述通路交汇点的研究进展,并探讨了新型抗抑郁药的可能作用靶点.  相似文献   

4.
环腺苷酸应答元件结合蛋白与学习记忆   总被引:2,自引:0,他引:2  
环腺苷酸(cAMP)应答元件结合蛋白(cAMP response element binding protein,CREB)是一种核转录因子,可与cAMP反应元件结合,调节基因转录,具有调节精子生成,昼夜节律,学习记忆等功能.近年来关于其在学习记忆中的作用成为医学研究热点.CREB是神经元内多条信息传递途径的汇聚点,参与长时记忆形成和突触可塑性.长时记忆(long-term memory)形成需依赖CREB介导的基因转录,干扰或抑制CREB活性可破坏长时记忆.长时程增强(long-term potentiation,LTP)是研究学习记忆的理想模型,在LTP诱导和维持过程中均可观察到CREB活性持续升高.但增龄过程中,海马CREB活性下降,影响学习记忆功能,与许多神经退行性疾病发生有关.  相似文献   

5.
Chen L  Zhao YN  Dai JG 《生理科学进展》2010,41(6):464-467
抑郁模型动物普遍存在海马神经发生缺隐,许多抗抑郁措施可提高海马神经发生,提示海马神经发生和抑郁症之间的密切联系,其机制可能涉及激素、神经递质、受体、神经营养因子、信号转导通路以及神经胶质细胞的功能等。研究海马神经发生有助于探讨抑郁症的发病机制,以便从新的角度研发抗抑郁药物。  相似文献   

6.
Yao FR  Cao DY  Zhao Y 《生理科学进展》2006,37(2):125-128
cAMP应答元件结合蛋白(cAMP response element binding protein,CREB)是刺激诱导的一种转录因子,通过磷酸化实现调节转录功能。疼痛和痛觉过敏是组织损伤或炎症时常伴有的生理病理过程,谷氨酸、P物质等神经递质或神经肽以及细胞内的信号转导途径参与此过程。近年来研究发现CREB通过自身磷酸化,在炎症、神经损伤等诱发的自发性疼痛、痛觉过敏及痛觉超敏中具有重要作用。本文从CREB的一般特性及其在脊髓水平的痛觉调制中的作用等方面予以综述。  相似文献   

7.
抑郁症是一种发生率高、易复发、危害大的精神障碍,其主要临床表现是持续的情绪低落和认知功能障碍.近年来其发病率越来越高,已经引起了人们广泛关注,由于其发病机制比较复杂,目前尚未完全阐明.神经营养假说认为,神经营养因子具有维持神经元生存、促进突触生长的作用,倘若前额叶、海马等脑区神经营养因子缺乏,可抑制相应脑功能从而最终导致抑郁;故抗抑郁药物治疗抑郁的途径是增加脑中的神经营养因子含量、提高突触可塑性和促进神经元生存.总之神经营养因子表达水平下降参与了抑郁症的病理生理过程.在众多神经营养因子中,VEGF是一种多功能的因子,能够通过多种途径促进血管生成,保护缺血和退变的神经元,引发成年大脑神经元再生,从而影响抑郁.而研究表明,成年海马神经发生与正在进行的血管生成是有着密切的联系.本文主要对VEGF在海马神经发生的作用机制及其调控对抑郁症的影响进行阐述.发现VEGF在调节海马神经发生具有重要的作用,并且VEGF及其下游信号参与了抑郁症的发生发展过程.  相似文献   

8.
细胞周期是一个复杂而精细的调节过程,有许多蛋白参与。其cyclin、CDK、CKI是细胞周期调控的内源性分子,三者在细胞周期中相互协调并与细胞信号转导通路之间形成复杂的调控网络。cAMP应答元件结合蛋白(cAMP response element binding protein,CREB)作为细胞核内调控因子,通过自身磷酸化实现调节功能,改变cyclin、CDK和CKI的转录,从而调控细胞周期。该文就近年来CREB对细胞周期调控的研究进展作一综述。  相似文献   

9.
海马不仅参与学习和记忆,而且对食欲和能量平衡也发挥作用。阐明海马内葡萄糖转运体4(glucose transporter 4,GLUT4)与海马依赖性认知功能改变以及海马内葡萄糖代谢之间的关系,对深入理解营养性肥胖和糖尿病相关疾病的病理生理基础以及治疗认知功能障碍有重要意义。本文对近年来海马内GLUT4与海马依赖性认知功能改变以及海马内葡萄糖代谢之间关系的相关研究进行综述,主要探讨:(1)GLUT4的结构和海马内分布及功能;(2)海马内GLUT4转位;(3)PI3K-AktGLUT4信号通路与高脂膳食诱导的认知功能改变以及海马内葡萄糖代谢的关联;(4)海马内PI3K-Akt-GLUT4信号通路与糖尿病相关的认知功能障碍的关联;(5)葡萄糖代谢异常引起认知功能障碍的可能机制。  相似文献   

10.
成纤维细胞生长因子9(fibroblast growth factor 9, FGF9)是成纤维细胞生长因子(fibroblast growth factor,FGF)家族成员之一,属于一种自分泌或旁分泌生长因子。在脑组织中,FGF9主要表达于海马和皮质区,具有促进细胞增殖和维持细胞存活的功能。研究发现,FGF家族在抑郁症患者的多个脑区出现表达紊乱,FGF9在抑郁行为中扮演着负调控角色,但其介导抑郁行为的分子机制尚不清楚。本文综述了FGF9及其家族成员在抑郁中的作用; 围绕其受体(FGFR)信号在中枢神经系统中的功能特点,深入分析FGF9调节抑郁行为中的作用机制;结合运动抗抑郁的神经营养假说,提出经由FGFR/GSK3β/β-catenin通路的FGF信号,可能介导抑郁症的运动干预机制的假设。这些将为FGF9介导抑郁行为和运动抗抑郁的有关研究提供理论的基础和探索的思路。  相似文献   

11.
Changes of pyramidal tract (PT) response after short tetanization, similar to natural stimulation conditions, were analysed in unanaesthetized and nonimmobilized rabbits. PT response recording revealed a long-term (1 h and more) potentiation of monosynaptic neocortical reactions. Predominant better expressed and more preserved increase of synaptic (N) component provides evidence to the conjecture that the basic mechanism of the long-term potentiation consists in the rise of efficiency of excitatory synaptic connections. Less protracted and differently directed changes of D-component permit to consider that excitability change of neurones may be only an additional mechanism of the long-term potentiation. Such features of neocortical long-term potentiation were revealed as its low-frequency depression (at test stimuli repetition) and its spontaneous restoration after depression.  相似文献   

12.
卒中后抑郁(post-stroke depression,PSD)是并发于脑血管病的一种情感障碍疾病,发病率高,预后差。重复经颅磁刺激(repetitive transcranial magnetic stimulation,r TMS)是通过磁场变化在大脑中产生感应电流来刺激皮层的非创伤性脑刺激技术,是临床上治疗PSD的一种重要非药物治疗方法,可以显著改善PSD患者的抑郁症状。但目前rTMS的作用机制不明确。本文总结了PSD治疗中有效的rTMS刺激方案,并结合PSD的单胺类神经递质相关致病假说及PSD的临床治疗手段,探索了rTMS通过对单胺类神经递质的调控参与PSD治疗的可能机制。rTMS刺激诱导的皮层单胺类递质释放增加、葡萄糖代谢上升、皮层兴奋性增加,提高了单胺类神经递质和脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)水平,进而引发前额叶抑制功能上升、与下游脑区连接改变、脑网络功能的调整,可能是rTMS治疗PSD的重要机制之一。  相似文献   

13.
Experimental results consistently show that the respiratory control system is plastic, such that environmental factors and experience can modify its performance. Such plasticity may represent basic neurobiological principles of learning and memory, whereby intermittent sensory stimulation produces long-term alterations (i.e. facilitation or depression) in synaptic transmission depending on the timing and intensity of the stimulation. In this review, we propose that intermittent chemosensory stimulation produces long-term changes in respiratory motor output via specific neuromodulatory systems. This concept is based on recent data suggesting that intermittent hypoxia produces a net long-term facilitation of respiratory output via the serotonergic system, whereas intermittent hypercapnia produces a net long-term depression by a mechanism associated with the noradrenergic system. There is suggestive evidence that, although both respiratory stimuli activate both modulatory systems, the balance is different. Thus, these opposing modulatory influences on respiratory motor control may provide a 'push-pull' system, preventing unchecked and inappropriate fluctuations in ventilatory drive.  相似文献   

14.
In the past 2 years powerful evidence has emerged to suggest that nitric oxide functions as a neurotransmitter in both the central and peripheral nervous systems. Recent evidence suggests that it may play a role in mediating forms of synaptic plasticity such as long-term potentiation in the CA1 region of the hippocampus, and long-term depression in the cerebellum. Abnormal secretion of nitric oxide may be responsible for the neurotoxicity mediated by NMDA receptors that results in the pathophysiology of strokes and neurodegenerative diseases.  相似文献   

15.
Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Life stressors contribute in some fashion to depression and are an extension of what occurs normally. In this context, chronic stress has been used as an animal model of depression. Based on the hypothesis that metabolism impairment might be involved in the pathophysiology of depression, in the present work we evaluated the activities of mitochondrial respiratory chain complexes and creatine kinase in brain of rats subjected to chronic stress. After 40 days of mild stress, a reduction in sweet food ingestion was observed, as well as increased adrenal gland weight, when compared to control group. We also verified that control group gained weight after 40 days, but stressed group did not. Moreover, our findings showed that complex I, III and IV were inhibited in stress group only in cerebral cortex and cerebellum. On the other hand, complex II and creatine kinase were not affected in stressed group. Although it is difficult to extrapolate our findings to the human condition, the inhibition of mitochondrial respiratory chain by chronic stress may be one mechanism in the pathophysiology of depressive disorders.  相似文献   

16.
Depressive disorders, including major depression, are serious and disabling. However, the exact pathophysiology of depression is not clearly understood. Life stressors contribute in some fashion to depression and are an extension of what occurs normally. In this context, chronic stress has been used as an animal model of depression. Based on the hypothesis that metabolism impairment might be involved in the pathophysiology of depression, in the present work we evaluated the activities of mitochondrial respiratory chain complexes and creatine kinase in brain of rats subjected to chronic stress. After 40 days of mild stress, a reduction in sweet food ingestion was observed, as well as increased adrenal gland weight, when compared to control group. We also verified that control group gained weight after 40 days, but stressed group did not. Moreover, our findings showed that complex I, III and IV were inhibited in stress group only in cerebral cortex and cerebellum. On the other hand, complex II and creatine kinase were not affected in stressed group. Although it is difficult to extrapolate our findings to the human condition, the inhibition of mitochondrial respiratory chain by chronic stress may be one mechanism in the pathophysiology of depressive disorders.  相似文献   

17.
Depression is a common and highly debilitating psychiatric illness. However, the pathophysiology of depression is not fully understood. In this study Sprague-Dawley rats were exposed to chronic unpredictable mild stress (CUMS) to induce depression. A metabonomic study on plasma of CUMS-induced depressive rats was performed to research the pathologic mechanism of depression by using 1H nuclear magnetic resonance (NMR) spectroscopy and ultra performance liquid chromatography coupled to mass spectrometry (UPLC–MS). Clear separations between depressive rats and control rats were observed by principal component analysis (PCA) based on the data obtained using both analytical techniques and 18 significantly changed metabolites were identified as potential biomarkers of depression. Depressive rats were characterized by altered levels of plasma lysophosphatidylcholines, amino acids, cholic acid, choline, lactate, glycoproteins, glucose, ketone bodies, nucleosides and gut microflora metabolites, which were related to multiple perturbed metabolic pathways and contributed to the elucidation of the complex mechanism of depression. To the best of our knowledge, this is the first plasma metabonomic study on CUMS-induced depressive rats by using two complementary analytical technologies. Our results showed that metabonomic approach offers a useful tool to identify depression-specific biomarkers and provide new insights into the pathophysiology of depression.  相似文献   

18.
Major depression is a public health problem, affecting 121 million people worldwide. Patients suffering from depression present high rates of morbidity, causing profound economic and social impacts. Furthermore, patients with depression present cognitive impairments, which could influence on treatment adherence and long-term outcomes. The pathophysiology of major depression is not completely understood yet but involves reduced levels of monoamine neurotransmitters, bioenergetics, and redox disturbances, as well as inflammation and neuronal loss. Treatment with anti-depressants provides a complete remission of symptoms in approximately 50% of patients with major depression. However, these drugs may cause side effects, as sedation and weight gain. In this context, there is increasing interest in studies focusing on the anti-depressant effects of natural compounds found in the diet. Resveratrol is a polyphenolic phytoalexin (3,4′,5-trihydroxystilbene; C14H12O3; MW 228.247 g/mol) and has been found in peanuts, berries, grapes, and wine and induces anti-oxidant, anti-inflammatory, and anti-apoptotic effects in several mammalian cell types. Resveratrol also elicits anti-depressant effects, as observed in experimental models using animals. Therefore, resveratrol may be viewed as a potential anti-depressant agent, as well as may serve as a model of molecule to be modified aiming to ameliorate depressive symptoms in humans. In the present review, we describe and discuss the anti-depressant effects of resveratrol focusing on the mechanism of action of this phytoalexin in different experimental models.  相似文献   

19.
Beta amyloid (Abeta), a peptide generated from the amyloid precursor protein (APP) by neurons, is widely believed to underlie the pathophysiology of Alzheimer's disease. Recent studies indicate that this peptide can drive loss of surface AMPA and NMDA type glutamate receptors. We now show that Abeta employs signaling pathways of long-term depression (LTD) to drive endocytosis of synaptic AMPA receptors. Synaptic removal of AMPA receptors is necessary and sufficient to produce loss of dendritic spines and synaptic NMDA responses. Our studies indicate the central role played by AMPA receptor trafficking in Abeta-induced modification of synaptic structure and function.  相似文献   

20.
Nemeroff CB 《Neuron》2008,59(2):185-186
Depression during pregnancy and in the postpartum period is common, devastating to mothers and their offspring, and poorly understood in terms of pathophysiology. In this issue of Neuron, Maguire and Mody provide evidence for a role for aberrant neurosteroid regulation of the GABA(A) receptor subunit in the etiology of postpartum depression, presaging elucidation of the pathophysiology and development of treatments of this depression endophenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号