首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anand R  Hoskins AA  Stubbe J  Ealick SE 《Biochemistry》2004,43(32):10328-10342
Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to formylglycinamidine ribonucleotide (FGAM), ADP, P(i), and glutamate in the fourth step of the purine biosynthetic pathway. In eukaryotes and Gram-negative bacteria, FGAR-AT is encoded by the purL gene as a multidomain protein with a molecular mass of about 140 kDa. In Gram-positive bacteria and archaebacteria FGAR-AT is a complex of three proteins: PurS, PurL, and PurQ. We have determined the structure of FGAR-AT (PurL) from Salmonella typhimurium at 1.9 A resolution using X-ray crystallography. PurL is the last remaining enzyme in the purine biosynthetic pathway to have its structure determined. The structure reveals four domains: an N-terminal domain structurally homologous to a PurS dimer, a linker region, an FGAM synthetase domain homologous to an aminoimidazole ribonucleotide synthetase (PurM) dimer, and a triad glutaminase domain. The domains are intricately linked by interdomain interactions and peptide connectors. The fold common to PurM and the central region of PurL represents a superfamily for which HypE, SelD, and ThiL are predicted to be members. A structural ADP molecule was found bound to a site related to the putative active site by pseudo-2-fold symmetry and two sulfate ions were found at the putative active site. These observations and the structural similarities between PurM and StPurL were used to model the substrates FGAR and ATP in the StPurL active site. A glutamylthioester intermediate was found in the glutaminase domain at Cys1135. The N-terminal (PurS-like) domain is hypothesized to form the putative channel through which ammonia passes from the glutaminase domain to the FGAM synthetase domain.  相似文献   

2.
Thiamin monophosphate kinase (ThiL) catalyzes the ATP-dependent phosphorylation of thiamin monophosphate (TMP) to form thiamin pyrophosphate (TPP), the active form of vitamin B 1. ThiL is a member of a small ATP binding superfamily that also includes the purine biosynthetic enzymes, PurM and PurL, NiFe hydrogenase maturation protein, HypE, and selenophosphate synthase, SelD. The latter four enzymes are believed to utilize phosphorylated intermediates during catalysis. To understand the mechanism of ThiL and its relationship to the other superfamily members, we determined the structure of Aquifex aeolicus ThiL (AaThiL) with nonhydrolyzable AMP-PCP and TMP, and also with the products of the reaction, ADP and TPP. The results suggest that AaThiL utilizes a direct, inline transfer of the gamma-phosphate of ATP to TMP rather than a phosphorylated enzyme intermediate. The structure of ThiL is compared to those of PurM, PurL, and HypE, and the ATP binding site is compared to that of PurL, for which nucleotide complexes are available.  相似文献   

3.
Glycinamide ribonucleotide (GAR) synthetase, GAR transformylase and aminoimidazole ribonucleotide (AIR) synthetase are the second, third and fifth enzymes in the 10-step de novo purine biosynthetic pathway. From a cDNA library of Arabidopsis thaliana, cDNAs encoding the above three enzymes were cloned by functional complementation of corresponding Escherichia coli mutants. Each of the cDNAs encode peptides comprising the complete enzymatic domain of either GAR synthetase, GAR transformylase or AIR synthetase. Comparisons of the three Arabidopsis purine biosynthetic enzymes with corresponding enzymes/polypeptide-fragments from procaryotic and eucaryotic sources indicate a high degree of conserved homology at the amino acid level, in particular with procaryotic enzymes. Assays from extracts of E. coli expressing the complementing clones verified the specific enzymatic activity of Arabidopsis GAR synthetase and GAR transformylase. Sequence analysis, as well as Northern blot analysis indicate that Arabidopsis has single and monofunctional enzymes. In this respect the organization of these three plant purine biosynthesis genes is fundamentally different from the multifunctional purine biosynthesis enzymes characteristic of other eucaryotes and instead resembles the one gene, one enzyme relationship found in procaryotes.  相似文献   

4.
Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) catalyzes the conversion of formylglycinamide ribonucleotide (FGAR), ATP, and glutamine to formylglycinamidine ribonucleotide (FGAM), ADP, P(i), and glutamate in the fourth step of the purine biosynthetic pathway. PurL exists in two forms: large PurL (lgPurL) is a single chain, multidomain enzyme of about 1300 amino acids, whereas small PurL (smPurL) contains about 800 amino acids but requires two additional gene products, PurS and PurQ, for activity. smPurL contains the ATP and FGAR binding sites, PurQ is a glutaminase, and the function of PurS is just now becoming understood. We determined the structure of Bacillus subtilis PurS in two different crystal forms P2(1) and C2 at 2.5 and 2.0 A resolution, respectively. PurS forms a tight dimer with a central six-stranded beta-sheet flanked by four helices. In both the P2(1) and the C2 crystal forms, the quaternary structure of PurS is a tetramer. The concave faces of the PurS dimers interact via the C-terminal region to form a twelve-stranded beta-barrel with a hydrophilic core. We used the structure of PurS together with the structure of lgPurL from Salmonella typhimurium to construct a model of the PurS/smPurL/PurQ complex. The HisH (glutaminase) domain of imidazole glycerol phosphate synthetase was used as an additional model of PurQ. The model shows stoichiometry of 2PurS/smPurL/PurQ using a PurS dimer or 4PurS/2smPurL/2PurQ using a PurS tetramer. Both models place key conserved residues at the ATP/FGAR binding site and at a structural ADP binding site. The homology model is consistent with biochemical studies on the reconstituted complex.  相似文献   

5.
Morar M  Hoskins AA  Stubbe J  Ealick SE 《Biochemistry》2008,47(30):7816-7830
In the fourth step of the purine biosynthetic pathway, formyl glycinamide ribonucleotide (FGAR) amidotransferase, also known as PurL, catalyzes the conversion of FGAR, ATP, and glutamine to formyl glycinamidine ribonucleotide (FGAM), ADP, P i, and glutamate. Two forms of PurL have been characterized, large and small. Large PurL, present in most Gram-negative bacteria and eukaryotes, consists of a single polypeptide chain and contains three major domains: the N-terminal domain, the FGAM synthetase domain, and the glutaminase domain, with a putative ammonia channel located between the active sites of the latter two. Small PurL, present in Gram-positive bacteria and archaea, is structurally homologous to the FGAM synthetase domain of large PurL, and forms a complex with two additional gene products, PurQ and PurS. The structure of the PurS dimer is homologous with the N-terminal domain of large PurL, while PurQ, whose structure has not been reported, contains the glutaminase activity. In Bacillus subtilis, the formation of the PurLQS complex is dependent on glutamine and ADP and has been demonstrated by size-exclusion chromatography. In this work, a structure of the PurLQS complex from Thermotoga maritima is described revealing a 2:1:1 stoichiometry of PurS:Q:L, respectively. The conformational changes observed in TmPurL upon complex formation elucidate the mechanism of metabolite-mediated recruitment of PurQ and PurS. The flexibility of the PurS dimer is proposed to play a role in the activation of the complex and the formation of the ammonia channel. A potential path for the ammonia channel is identified.  相似文献   

6.
7.
Aminoimidazole ribonucleotide (AIR) synthetase (PurM) catalyzes the conversion of formylglycinamide ribonucleotide (FGAM) and ATP to AIR, ADP, and P(i), the fifth step in de novo purine biosynthesis. The ATP binding domain of the E. coli enzyme has been investigated using the affinity label [(14)C]-p-fluorosulfonylbenzoyl adenosine (FSBA). This compound results in time-dependent inactivation of the enzyme which is accelerated by the presence of FGAM, and gives a K(i) = 25 microM and a k(inact) = 5.6 x 10(-)(2) min(-)(1). The inactivation is inhibited by ADP and is stoichiometric with respect to AIR synthetase. After trypsin digestion of the labeled enzyme, a single labeled peptide has been isolated, I-X-G-V-V-K, where X is Lys27 modified by FSBA. Site-directed mutants of AIR synthetase were prepared in which this Lys27 was replaced with a Gln, a Leu, and an Arg and the kinetic parameters of the mutant proteins were measured. All three mutants gave k(cat)s similar to the wild-type enzyme and K(m)s for ATP less than that determined for the wild-type enzyme. Efforts to inactivate the chicken liver trifunctional AIR synthetase with FSBA were unsuccessful, despite the presence of a Lys27 equivalent. The role of Lys27 in ATP binding appears to be associated with the methylene linker rather than its epsilon-amino group. The specific labeling of the active site by FSBA has helped to define the active site in the recently determined structure of AIR synthetase [Li, C., Kappock, T. J., Stubbe, J., Weaver, T. M., and Ealick, S. E. (1999) Structure (in press)], and suggests additional flexibility in the ATP binding region.  相似文献   

8.
Thoden JB  Kappock TJ  Stubbe J  Holden HM 《Biochemistry》1999,38(47):15480-15492
Escherichia coli PurK, a dimeric N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) synthetase, catalyzes the conversion of 5-aminoimidazole ribonucleotide (AIR), ATP, and bicarbonate to N5-CAIR, ADP, and Pi. Crystallization of both a sulfate-liganded and the MgADP-liganded E. coli PurK has resulted in structures at 2.1 and 2.5 A resolution, respectively. PurK belongs to the ATP grasp superfamily of C-N ligase enzymes. Each subunit of PurK is composed of three domains (A, B, and C). The B domain contains a flexible, glycine-rich loop (B loop, T123-G130) that is disordered in the sulfate-PurK structure and becomes ordered in the MgADP-PurK structure. MgADP is wedged between the B and C domains, as with all members of the ATP grasp superfamily. Other enzymes in this superfamily contain a conserved Omega loop proposed to interact with the B loop, define the specificity of their nonnucleotide substrate, and protect the acyl phosphate intermediate formed from this substrate. PurK contains a minimal Omega loop without conserved residues. In the reaction catalyzed by PurK, carboxyphosphate is the putative acyl phosphate intermediate. The sulfate of the sulfate ion-liganded PurK interacts electrostatically with Arg 242 and the backbone amide group of Asn 245, components of the J loop of the C domain. This sulfate may reveal the location of the carboxyphosphate binding site. Conserved residues within the C-terminus of the C domain define a pocket that is proposed to bind AIR in collaboration with an N-terminal strand loop helix motif in the A domain (P loop, G8-L1). The P loop is proposed to bind the phosphate of AIR on the basis of similar binding sites observed in PurN and PurE and proposed in PurD and PurT, four other enzymes in the purine pathway.  相似文献   

9.
E Meyer  N J Leonard  B Bhat  J Stubbe  J M Smith 《Biochemistry》1992,31(21):5022-5032
Aminoimidazole riobnucleotide carboxylase, the sixth step in the purine biosynthetic pathway, catalyzes the conversion of aminoimidazole ribonucleotide (AIR) to carboxyaminoimidazole ribonucleotide (CAIR). The gene products of the purE and purK genes (PurE and PurK, respectively) thought to be responsible for this activity have been overexpressed and the proteins purified to homogeneity. PurE separates from PurK in the first ammonium sulfate fractionation during the purification. No evidence for association of the two gene products under a variety of conditions using a variety of methods could be obtained. To facilitate the assay for CAIR production, the purC gene product, 5-aminoimidazole-4-N-succinylcarboxamide ribonucleotide (SAICAR) synthetase has also been overexpressed and purified to homogeneity. The activities of PurE, PurK, and PurE.PurK have been investigated. PurE alone is capable of catalyzing the conversion of AIR to CAIR 1 million times faster than the nonenzymatic rate. The Km for HCO3- in the PurE-dependent reaction is 110 mM! PurK possesses an ATPase activity that is dependent on the presence of AIR. No bicarbonate dependence on this reaction could be demonstrated (less than 100 microM), and AIR is not carboxylated during the hydrolysis of ATP. Incubation of a 1:1 mixture of PurE and PurK at low concentrations of bicarbonate (less than 100 microM) revealed that CAIR is produced but requires the stoichiometric conversion of ATP to ADP and Pi. No dependence on the concentration of HCO3- could be demonstrated. A new energy requirement in the purine biosynthetic pathway has been established.  相似文献   

10.
In Salmonella enterica serovar Typhimurium, purine nucleotides and thiamine are synthesized by a branched pathway. The last known common intermediate, aminoimidazole ribonucleotide (AIR), is formed from formylglycinamidine ribonucleotide (FGAM) and ATP by AIR synthetase, encoded by the purI gene in S. enterica. Reduced flux through the first five steps of de novo purine synthesis results in a requirement for purines but not necessarily thiamine. To examine the relationship between the purine and thiamine biosynthetic pathways, purI mutants were made (J. L. Zilles and D. M. Downs, Genetics 143:37-44, 1996). Unexpectedly, some mutant purI alleles (R35C/E57G and K31N/A50G/L218R) allowed growth on minimal medium but resulted in thiamine auxotrophy when exogenous purines were supplied. To explain the biochemical basis for this phenotype, the R35C/E57G mutant PurI protein was purified and characterized kinetically. The K(m) of the mutant enzyme for FGAM was unchanged relative to the wild-type enzyme, but the V(max) was decreased 2.5-fold. The K(m) for ATP of the mutant enzyme was 13-fold increased. Genetic analysis determined that reduced flux through the purine pathway prevented PurI activity in the mutant strain, and purR null mutations suppressed this defect. The data are consistent with the hypothesis that an increased FGAM concentration has the ability to compensate for the lower affinity of the mutant PurI protein for ATP.  相似文献   

11.
Bazurto JV  Downs DM 《Genetics》2011,187(2):623-631
In Salmonella enterica, 5-aminoimidazole ribonucleotide (AIR) is the precursor of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) pyrophosphate moiety of thiamine and the last intermediate in the common HMP/purine biosynthetic pathway. AIR is synthesized de novo via five reactions catalyzed by the purF, -D, -T, -G, and -I gene products. In vivo genetic analysis demonstrated that in the absence of these gene products AIR can be generated if (i) methionine and lysine are in the growth medium, (ii) PurC is functional, and (iii) 5-amino-4-imidazolecarboxamide ribotide (AICAR) has accumulated. This study provides evidence that the five steps of the common HMP/purine biosynthetic pathway can be bypassed in the synthesis of AIR and thus demonstrates that thiamine synthesis can be uncoupled from the early purine biosynthetic pathway in bacteria.  相似文献   

12.
Meyer E  Kappock TJ  Osuji C  Stubbe J 《Biochemistry》1999,38(10):3012-3018
Formation of 4-carboxy-5-aminoimidazole ribonucleotide (CAIR) in the purine pathway in most prokaryotes requires ATP, HCO3-, aminoimidazole ribonucleotide (AIR), and the gene products PurK and PurE. PurK catalyzes the conversion of AIR to N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) in a reaction that requires both ATP and HCO3-. PurE catalyzes the unusual rearrangement of N5-CAIR to CAIR. To investigate the mechanism of this rearrangement, [4,7-13C]-N5-CAIR and [7-14C]-N5-CAIR were synthesized and separately incubated with PurE in the presence of ATP, aspartate, and 4-(N-succinocarboxamide)-5-aminoimidazole ribonucleotide (SAICAR) synthetase (PurC). The SAICAR produced was isolated and analyzed by NMR spectroscopy or scintillation counting, respectively. The PurC trapping of CAIR as SAICAR was required because of the reversibility of the PurE reaction. Results from both experiments reveal that the carboxylate group of the carbamate of N5-CAIR is transferred directly to generate CAIR without equilibration with CO2/HCO3- in solution. The mechanistic implications of these results relative to the PurE-only (CO2- and AIR-requiring) AIR carboxylases are discussed.  相似文献   

13.
Sucrose and Percoll density gradient centrifugation were used to separate organelles from the central zone tissue of cowpea (Vigna unguiculata L. Walp. cv Vita 3: Bradyrhizobium strain CB 756) nodules. Enzyme activity analysis has shown that both plastids and mitochondria have a full complement of enzymes for de novo purine synthesis. In vitro activities of individual component enzymes (glycinamide ribonucleotide synthetase, EC 6.3.4.13; glycinamide ribonucleotide transformylase, EC 2.1.2.2; aminoimidazole ribonucleotide synthetase, EC 6.3.3.1; aminoimidazole carboxamide ribonucleotide transformylase, EC 6.3.2.6; and adenylosuccinate-AMP lyase, EC 4.3.2.2) as well as of the whole purine pathway (from ribose-5-phosphate to inosine monophosphate) were similar in the two organelles. No significant cytosolic or bacteroidal activity of any of the purine pathway enzymes was detected on assay. These findings are contrary to earlier studies (M.J. Boland, K.R. Schubert [1983] Arch Biochem Biophys 220: 179-187; B.J. Shelp C.A. Atkins, P.J. Storer, D.T. Canvin [1983] Arch Biochem Biophys 224: 429-441) that concluded that enhanced expression of purine synthesis in nodules of ureide-forming species is localized to plastids. Significantly increased recovery of activity of key pathway enzymes (particularly of labile aminoimidazole ribonucleotide synthetase) coupled with improved assay methods and the use of Percoll in addition to sucrose for gradient centrifugation have together contributed to much higher reaction rates and more definitive analyses of particulate fractions.  相似文献   

14.
The effects of lowered intracellular ATP and GTP concentrations on enzymes of purine ribonucleotide synthesis and intercoversion were studied using intact Ehrlich ascites tumor cells. The apparent rates of phosphoribosyl pyrophosphate synthetase (EC 2.7.6.1) and of inosinate dehydrogenase (EC 1.2.1.14) were increased in cells containing lowered purine nucleotide concentrations, but apparent activities of amidophosphoribosyltransferase (EC 2.4.2.14), the purine phosphoribosyltransferases, and other enzymes of purine ribonucleotide interconversion were not affected.  相似文献   

15.
1. The pattern of distribution on the purine pathway of mutants of Salmonella typhimurium LT2 that had the double growth requirement for a purine plus the pyrimidine moiety of thiamine (ath mutants) indicated that purines and the pyrimidine moiety of thiamine share the early part of their biosynthetic pathways, and that 4-aminoimidazole ribonucleotide (AIR) is the last common intermediate. Two mutants that at first appeared anomalous were further investigated and found not to affect this deduction. 2. The ribonucleoside form of AIR (AIR(s)) satisfied the requirements both for a purine and for the pyrimidine moiety of thiamine of an ath mutant. 3. Methionine was required for the conversion of AIR into the pyrimidine moiety. 4. Radioactive AIR(s) was converted into radioactive pyrimidine moiety by an ath mutant without significant dilution of specific radioactivity. 5. Possible mechanisms for pyrimidine-moiety biosynthesis from AIR are discussed.  相似文献   

16.
Human purine de novo synthesis pathway contains several multi-functional enzymes, one of which, tri-functional GART, contains three enzymatic activities in a single polypeptide chain. We have solved structures of two domains bearing separate catalytic functions: glycinamide ribonucleotide synthetase and aminoimidazole ribonucleotide synthetase. Structures are compared with those of homologous enzymes from prokaryotes and analyzed in terms of the catalytic mechanism. We also report small angle X-ray scattering models for the full-length protein. These models are consistent with the enzyme forming a dimer through the middle domain. The protein has an approximate seesaw geometry where terminal enzyme units display high mobility owing to flexible linker segments. This resilient seesaw shape may facilitate internal substrate/product transfer or forwarding to other enzymes in the pathway.  相似文献   

17.
18.
The increasing risk of drug-resistant bacterial infections indicates that there is a growing need for new and effective antimicrobial agents. One promising, but unexplored area in antimicrobial drug design is de novo purine biosynthesis. Recent research has shown that de novo purine biosynthesis in microbes is different from that in humans. The differences in the pathways are centered around the synthesis of 4-carboxyaminoimidazole ribonucleotide (CAIR) which requires the enzyme N5-carboxyaminoimidazole ribonucleotide (N5-CAIR) synthetase. Humans do not require and have no homologs of this enzyme. Unfortunately, no studies aimed at identifying small-molecule inhibitors of N5-CAIR synthetase have been published. To remedy this problem, we have conducted high-throughput screening (HTS) against Escherichia coli N5-CAIR synthetase using a highly reproducible phosphate assay. HTS of 48,000 compounds identified 14 compounds that inhibited the enzyme. The hits identified could be classified into three classes based on chemical structure. Class I contains compounds with an indenedione core. Class II contains an indolinedione group, and Class III contains compounds that are structurally unrelated to other inhibitors in the group. We determined the Michaelis–Menten kinetics for five compounds representing each of the classes. Examination of compounds belonging to Class I indicates that these compounds do not follow normal Michaelis–Menten kinetics. Instead, these compounds inhibit N5-CAIR synthetase by reacting with the substrate AIR. Kinetic analysis indicates that the Class II family of compounds are non-competitive with both AIR and ATP. One compound in Class III is competitive with AIR but uncompetitive with ATP, whereas the other is non-competitive with both substrates. Finally, these compounds display no inhibition of human AIR carboxylase:SAICAR synthetase indicating that these agents are selective inhibitors of N5-CAIR synthetase.  相似文献   

19.
De novo purine biosynthesis proceeds by two divergent paths. In bacteria, yeasts, and plants, 5-aminoimidazole ribonucleotide (AIR) is converted to 4-carboxy-AIR (CAIR) by two enzymes: N(5)-carboxy-AIR (N(5)-CAIR) synthetase (PurK) and N(5)-CAIR mutase (class I PurE). In animals, the conversion of AIR to CAIR requires a single enzyme, AIR carboxylase (class II PurE). The CAIR carboxylate derives from bicarbonate or CO(2), respectively. Class I PurE is a promising antimicrobial target. Class I and class II PurEs are mechanistically related but bind different substrates. The spirochete dental pathogen Treponema denticola lacks a purK gene and contains a class II purE gene, the hallmarks of CO(2)-dependent CAIR synthesis. We demonstrate that T. denticola PurE (TdPurE) is AIR carboxylase, the first example of a prokaryotic class II PurE. Steady-state and pre-steady-state experiments show that TdPurE binds AIR and CO(2) but not N(5)-CAIR. Crystal structures of TdPurE alone and in complex with AIR show a conformational change in the key active site His40 residue that is not observed for class I PurEs. A contact between the AIR phosphate and a differentially conserved residue (TdPurE Lys41) enforces different AIR conformations in each PurE class. As a consequence, the TdPurE·AIR complex contains a portal that appears to allow the CO(2) substrate to enter the active site. In the human pathogen T. denticola, purine biosynthesis should depend on available CO(2) levels. Because spirochetes lack carbonic anhydrase, the corresponding reduction in bicarbonate demand may confer a selective advantage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号