首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
H/ACA small nucleolar and Cajal body ribonucleoproteins (RNPs) function in site-specific pseudouridylation of eukaryotic rRNA and snRNA, rRNA processing, and vertebrate telomerase biogenesis. Nhp2, one of four essential protein components of eukaryotic H/ACA RNPs, forms a core trimer with the pseudouridylase Cbf5 and Nop10 that binds to H/ACA RNAs specifically. Crystal structures of archaeal H/ACA RNPs have revealed how the protein components interact with each other and with the H/ACA RNA. However, in place of Nhp2p, archaeal H/ACA RNPs contain L7Ae, which binds specifically to an RNA K-loop motif absent from eukaryotic H/ACA RNPs, while Nhp2 binds a broader range of RNA structures. We report solution NMR studies of Saccharomyces cerevisiae Nhp2 (Nhp2p), which reveal that Nhp2p exhibits two major conformations in solution due to cis/trans isomerization of the evolutionarily conserved Pro83. The equivalent proline is in the cis conformation in all reported structures of L7Ae and other homologous proteins. Nhp2p has the expected α-β-α fold, but the solution structures of the major conformation of Nhp2p with trans Pro83 and of Nhp2p-S82W with cis Pro83 reveal that Pro83 cis/trans isomerization affects the positions of numerous residues at the Nop10 and RNA binding interface. An S82W substitution, which stabilizes the cis conformation, also stabilizes the association of Nhp2p with H/ACA snoRNPs expressed in vivo. We propose that Pro83 plays a key role in the assembly of the eukaryotic H/ACA RNP, with the cis conformation locking in a stable Cbf5-Nop10-Nhp2 ternary complex and positioning the protein backbone to interact with the H/ACA RNA.  相似文献   

2.
RNA 2′O-methylation is a frequent modification of rRNA and tRNA and supposed to influence RNA folding and stability. Ribonucleoprotein (RNP) complexes, containing the proteins Nop5, L7A, fibrillarin, and a box C/D sRNA, are guided for 2′O-methylation by interactions of their RNA component with their target RNA. In vitro complex assembly was analyzed for several thermophilic Archaea but in vivo studies are rare, even unavailable for halophilic Archaea. To analyze the putative box C/D RNP complex in the extremely halophilic Halobacterium salinarum NRC-1 we performed pull-down analysis and identified the proteins Nop5, L7A, and fibrillarin and the tRNATrp intron, as a typical box C/D sRNA of this RNP complex in vivo. We show for the first time a ribonucleolytic activity of the purified RNP complex proteins, as well as for the RNP complex containing pull-down fractions. Furthermore, we identified a novel RNA (OE4630R-3′sRNA) as part of the complex, containing the typical boxes C/D and C′/D′ sequence motifs and being twice as abundant as the tRNATrp intron.  相似文献   

3.
Box H/ACA small nucleolar (sno) ribonucleoproteins (RNPs) are responsible for the formation of pseudouridine in a variety of RNAs and are essential for ribosome biogenesis, modification of spliceosomal RNAs, and telomerase stability. A mature snoRNP has been reconstituted in vitro and is composed of a single RNA and four proteins. However, snoRNP biogenesis in vivo requires multiple factors to coordinate a complex and poorly understood assembly and maturation process. Among the factors required for snoRNP biogenesis in yeast is Shq1p, an essential protein necessary for stable expression of box H/ACA snoRNAs. We have found that Shq1p consists of two independent domains that contain casein kinase 1 phosphorylation sites. We also demonstrate that Shq1p binds the pseudourydilating enzyme Cbf5p through the C-terminal domain, in synergy with the N-terminal domain. The NMR solution structure of the N-terminal domain has striking homology to the ‘Chord and Sgt1’ domain of known Hsp90 cochaperones, yet Shq1p does not interact with the yeast Hsp90 homologue in vitro. Surprisingly, Shq1p has stand-alone chaperone activity in vitro. This activity is harbored by the C-terminal domain, but it is increased by the presence of the N-terminal domain. These results provide the first evidence of a specific biochemical activity for Shq1p and a direct link to the H/ACA snoRNP.  相似文献   

4.
Polyglutamine tract-binding protein-1 (PQBP-1) is a nuclear protein that interacts with various proteins, including RNA polymerase II and the spliceosomal protein U5-15kD. PQBP-1 is known to be associated with X-linked mental retardation in which a frameshift mutation in the PQBP-1 gene occurs. In the present study, we demonstrate that PQBP-1 binds to U5-15kD via a continuous 23-residue segment within its C-terminal domain. Intriguingly, this segment is lost in the frameshift mutants of PQBP-1 associated with X-linked mental retardation. These findings suggest that the frameshift mutations in the PQBP-1 gene lead to expression of mutants lacking the ability to interact with U5-15kD.  相似文献   

5.
Steroid receptor activator RNA protein (SRA1p) is the translation product of the bi-functional long non-coding RNA steroid receptor activator RNA 1 (SRA1) that is part of the steroid receptor coactivator-1 acetyltransferase complex and is indicated to be an epigenetic regulatory component. Previously, the SRA1p protein was suggested to contain an RNA recognition motif (RRM) domain. We have determined the solution structure of the C-terminal domain of human SRA1p by NMR spectroscopy. Our structure along with sequence comparisons among SRA1p orthologs and against authentic RRM proteins indicates that it is not an RRM domain but rather an all-helical protein with a fold more similar to the PRP18 splicing factor. NMR spectroscopy on the full SRA1p protein suggests that this structure is relevant to the native full-length context. Furthermore, molecular modeling indicates that this fold is well conserved among vertebrates. Amino acid variations in this protein seen across sequenced human genomes, including those in tumor cells, indicate that mutations that disrupt the fold occur vary rarely and highlight that its function is well conserved. SRA1p had previously been suggested to bind to the SRA1 RNA, but NMR spectra of SRA1p in the presence of its 80-nt RNA target suggest otherwise and indicate that this protein must be part of a multi-protein complex in order to recognize its proposed RNA recognition element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号