首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Current noise power spectra of the voltage-clamped (V=0)Necturus gallbladder, exposed to NaCl-Ringer's on both sides contained a relaxation noise component, which overlapped with a 1/f noise component, with being about 2. Substitution of all Na+ by K+ on either the serosal or mucosal side increased the relaxation as well as the 1/f noise component considerably. InNecturus gallbladder both noise components are reduced by addition of 10mm 2,4,6-triaminopyrimidine (TAP) or 5mm of tetraethylammonium (TEA+) added to ification of the mucosal solution to pH 5 and lower. Fivemm of tetraethylammonium (TEA+) added to the mucosal solution, abolished K+ relaxation noise and decreased the 1/f noise component. Applying a Cs+ concentration gradient across the epithelium did not yield relaxation noise. However, if Rb+ was substituted for all Na+ on one side, a Lorentzian noise component appeared in the spectrum. Its plateau was smaller than with KCl-Ringer's on the respective side. These data confirm the existence of fluctuating K+ channels in the apical membrane of theNecturus gallbladder. Furthermore it can be concluded that these channels have the permeability sequence K+>Rb+>Sc+. The inhibition of the fluctuations by mucosal acidification indicates the existence of acidic sites in the channel. The single-channel conductance was estimated to be between 6.5 and 40 pS.  相似文献   

2.
Summary In this paper we describe current fluctuations in the mammalian epithelium, rabbit descending colon. Pieces of isolated colon epithelium bathed in Na+ or K+ Ringer's solutions were studied under short-circuit conditions with the current noise spectra recorded over the range of 1–200 Hz. When the epithelium was bathed on both sides with Na+ Ringer's solution (the mucosal solution contained 50 m amiloride), no Lorentzian components were found in the power spectrum. After imposition of a potassium gradient across the epithelium by replacement of the mucosal solution by K+ Ringer's (containing 50 m amiloride), a Lorentzian component appeared with an average corner frequency,f c=15.6±0.91 Hz and a mean plateau valueS o=(7.04±2.94)×10–20 A2 sec/cm2. The Lorentzian component was enhanced by voltage clamping the colon in a direction favorable for K+ entry across the apical membrane. Elimination of the K+ gradient by bathing the colon on both sides with K+ Ringer's solutions abolished the noise signal. The Lorentzian component was also depressed by mucosal addition of Cs+ or tetraethylammonium (TEA) and by serosal addition of Ba2+. The one-sided action of these K+ channel blockers suggests a cellular location for the fluctuating channels. Addition of nystatin to the mucosal solution abolished the Lorentzian component. Serosal nystatin did not affect the Lorentzian noise. This finding indicates an apical membrane location for the fluctuating channels. The data were similar in some respects to K+ channel fluctuations recorded from the apical membranes of amphibian epithelia such as the frog skin and toad gallbladder. The results are relevant to recent reports concerning transcellular potassium secretion in the colon and indicate that the colon possesses spontaneously fluctuating potassium channels in its apical membranes in parallel to the Na+ transport pathway.  相似文献   

3.
Summary Chloride-stimulated K+ secretion by Manduca sexta midgut (5th-instar larvae) was measured as K+-carried short-circuit current of the tissue mounted in an Ussing chamber. Microscopic parameters, such as single-channel current and channel density for the rate-determining passive transport step across the basolateral goblet cell membrane (i.e. K+ channels), were estimated by means of current-fluctuation analysis of the K+ channel blockade by haemolymph-side Ba2+ ions. Ba2+ was equally effective with Cl- or gluconate (Glu-) as the principal ambient anion. The Ba2+-induced K+ channel conduction noise is reflected by a Lorentzian, or relaxation, noise component in the power spectrum of the K+ current fluctuations. A reduced Lorentzian plateau value, but an unchanged corner frequency, were observed when Cl- was replaced by Glu-. The results from the analysis of a two-state model of K+ channel block by Ba2+, with respect to the anion-replacement effects, suggest that the observed changes in K+ current and Lorentzian plateau value mirror a complex change of the underlying parameters: Cl- omission reduces single channel current but increases channel density so that the product of single channel current and channel density is smaller in Glu- than in Cl-. It seems likely that basolateral K+ channels (1) are subject to anionic gating ligands, and (2) depend on anions with respect to the rate of K+ transfer through and open K+ channel.Abbreviations a.c. alternating current - single-channel conductance - E K K+ Nernst potential - f frequency contained in current noise - f c corner frequency - Glu- gluconate - G t transepithelial conductance - I sc short-circuit current - I K K+ current - I K(max) maximal K+ current - i single-channel current - K Ba barium inhibition constant - K m Michaelis constant of saturating K+ current - k 01 and k 10 barium association and dissociation rate constant, respectively - M K+ channel density - S f power density - S o Lorentzian plateau value - P o channel-open probability - P K K+ permeability - V sc cellular potential at short-circuit These results have already been presented in part, at the 1989 joint meeting of the German and Israel Physiological Societies in Jerusalem (Zeiske et al. 1990).  相似文献   

4.
Summary The properties of Ca2+-activated K+ channels in the apical membrane of theNecturus choroid plexus were studied using single-channel recording techniques in the cell-attached and excised-patch configurations. Channels with large unitary conductances clustered around 150 and 220 pS were most commonly observed. These channels exhibited a high selectivity for K+ over Na+ and K+ over Cs+. They were blocked by high cytoplasmic Na+ concentrations (110mm). Channel activity increased with depolarizing membrane potentials, and with increasing cytoplasmic Ca2+ concentrations. Increasing Ca2+ from 5 to 500nm, increased open probability by an order of magnitude, without changing single-channel conductance. Open probability increased up to 10-fold with a 20-mV depolarization when Ca2+ was 500nm. Lowering intracellular pH one unit, decreased open probability by more than two orders of magnitude, but pH did not affect single-channel conductance. Cytoplasmic Ba2+ reduced both channel-open probability and conductance. The sites for the action of Ba2+ are located at a distance more than halfway through the applied electric field from the inside of the membrane. Values of 0.013 and 117mm were calculated as the apparent Ba2+ dissociation constants (K d (0 mV) for the effects on probability and conductance, respectively. TEA+ (tetraethylammonium) reduced single-channel current. Applied to the cytoplasmic side, it acted on a site 20% of the distance through the membrane, with aK d (0 mV)=5.6mm. A second site, with a higher affinity,K d (0 mV)=0.23mm, may account for the near total block of chanel conductance by 2mm TEA+ applied to the outside of the membrane. It is concluded that the channels inNecturus choroid plexus exhibit many of the properties of maxi Ca2+-activated K+ channels found in other tissues.  相似文献   

5.
Single-channel properties of a delayed rectifier voltage-gated K+ channel (I-type) were investigated in peripheral myelinated axons from Xenopus laevis. Channels activated between −60 and −40 mV with a potential of half-maximal activation, E50, at −47.5 mV. Averaged single-channel currents activated with a time delay at all membrane potentials tested. Time to half-maximal activation decreased from 80 to 1.6 msec between −60 and +40 mV. The channel inactivated monoexponentially with a time constant of 10.9 sec at −40 mV. The time constant of deactivation was 126 msec at −80 mV and 16.9 msec at −110 mV. In symmetrical 105 mm K+, the single-channel conductance (γ) was 22 and 13 pS at negative and positive membrane potentials, respectively, at 13–15°C. In Na+-rich solution with 2.5 mm extracellular K+γ was 7 pS and the reversal potential was negative to −80 mV, indicating a high selectivity for K+ over Na+. γ depended on extracellular K+ concentration (K D = 19.6 mm) and temperature (Q 10= 1.45). External tetraethylammonium (TEA) reduced the apparent single-channel current amplitude at all potentials tested with a half-maximal inhibiting concentration (IC50) of 0.6 mm. Open probability of the channel, but not single-channel current amplitude was decreased by extracellular dendrotoxin (DTX, IC50= 6.8 nm) and mast cell degranulating peptide (MCDP, IC50= 41.9 nm). In Ringer solution the membrane potential of macroscopic I-channel patches was about −65 mV and depolarized under TEA and DTX. It is concluded that besides their activation during action potentials, I-channels may also stabilize the resting membrane potential. Received: 2 June 1995/Revised: 13 October 1995  相似文献   

6.
Summary The tight-seal whole-cell recording method has been used to studyNecturus choroid plexus epithelium. A cell potential of –59±2 mV and a whole cell resistance of 56±6 M were measured using this technique. Application of depolarizing step potentials activated voltage-dependent outward currents that developed with time. For example, when the cell was bathed in 110mm NaCl Ringer solution and the interior of the cell contained a solution of 110mm KCl and 5nm Ca2+, stepping the membrane potential from a holding value of –50 to –10 mV evoked outward currents which, after a delay of greater than 50 msec, increased to a steady state in 500 msec. The voltage dependence of the delayed currents suggests that they may be currents through Ca2+-activated K_ channels. Based on the voltage dependence of the activation of Ca2+-activated K+ channels, we have devised a general method to isolate the delayed currents. The delayed currents were highly selective for K+ as their reversal potential at different K+ concentration gradients followed the Nernst potential for K+. These currents were reduced by the addition of TEA+ to the bath solution and were eliminated when Cs+ or Na+ replaced intracellular K+. Increasing the membrane potential to more positive values decreased both the delay and the half-times (t 1/2) to the steady value. Increasing the pipette Ca2+ also decreased the delay and decreasedt 1/2. For instance, when pipette Ca2+ was increased from 5 to 500nm, the delay andt 1/2 decreased from values greater than 50 and 150 msec to values less than 10 and 50 msec. We conclude that the delayed currents are K+ currents through Ca2+-activated K+ channels.At the resting membrane potential of –60 mV, Ca2+-activated K+ channels contribute between 13 to 25% of the total conductance of the cell. The contribution of these channels to cell conductance nearly doubles with membrane depolarization of 20–30 mV. Such depolarizations have been observed when cerebrospinal fluid (CSF) secretion is stimulated by cAMP and with intracellular Ca2+. Thus the Ca2+-activated K+ channels may play a specific role in maintaining intracellular K+ concentrations during CSF secretion.  相似文献   

7.
Summary Guard cells of higher plants control transpirational water loss and gas exchange for photosynthesis by opening and closing pores in the epidermis of the leaf. To power these turgordriven movements, guard cells accumulate (and lose) 200 to 400mm (1 to 3 pmol/cell) K+, fluxes thought to pass through K+ channels in the guard cells plasma membrane. Steady-state current-voltage (I–V) relations of intactVicia guard cells frequently show large, outward-going currents at potentials approaching 0 mV. Since this current could be carried by K+ channels, its pharmacology and dependence on external K+ (K v + ) has been examined under voltage clamp over an extended potential range. Measurements were carried out on cells which showed little evidence of primary electrogenic transport, thus simplifying analyses. Clamping these cells away from the free-running membrane potential (V m ) revealed an outward-rectifying current with instantaneous and time-dependent components, and sensitive to the K+ channel blocker tetraethylammonium chloride. The current declined also under metabolic blockade with NaCN and in the presence of diethylstilbesterol, responses which were attributed to secondary effects of these inhibitors. The putative K+ current rose with voltage positive toV m but it decayed over two voltage ranges, one negative toV m and one near +100 mV, to give steady-stateI–V relations with two regions of negative (slope) conductance. Voltage-dependent and kinetic characteristics of the current were affected by K v + and followed the K+ equilibrium potential. Against a (presumably) low background of primary ion transport, the K+ current contributed appreciably to charge balance atV m in 0.1mm as well as in 1 to 10mm K v + . Thus, gating of these K+ channels compensates for the prevailing K+ conditions to ensure net K+ movement out of the cell.  相似文献   

8.
The initial response of coleoptile cells to growth hormones and light is a rapid change in plasma-membrane polarization. We have isolated protoplasts from the cortex of maize (Zea mays L.) coleoptiles to study the electrical properties of their plasma membrane by the patch-clamp techniqueUsing the whole-cell configuration and cell-free membrane patches we could identify an H+-ATPase, hyperpolarizing the membrane potential often more negative than -150 mV, and a voltage-dependent, inward-rectifying K+ channel (unit conductance 5–7 pS) as the major membrane conductan-ces Potassium currents through this channel named CKC1in (for Coleoptile K + Channel inward rectifier) were elicited upon voltage steps negative to -80 mV, characterized by a half-activation potential of -112 mV. The kinetics of activation, well described by a double-exponential process, were strongly dependent on the degree of hyperpolarization and the cytoplasmic Ca2+ level. Whereas at nanomolar Ca2+ concentrations K+ currents increased with a t1/2=16 ms (at -180 mV), higher calcium levels slowed the activation process about fourto fivefoldUpon changes in the extracellular K+ concentration the reversal potential of the K+ channel followed the Nernst potential for potassium with a 56-mV shift for a tenfold increaseThe absence of a measurable conductance for Na+, Rb+, Cs+ and a permeability ratio PNH 4 + /PK+ around 0.25 underlines the high selectivity of CKC1in for K+In contrast to Cs+, which at submillimolar concentration blocks the channel in a voltage-dependent manner, Rb+, often used as a tracer for K+, does not permeate this type of K+ channelThe lack of Rb+ permeability is unique with respect to other K+ transporters. Therefore, future molecular analysis of CKC1in, considered as a unique variation of plant inward rectifiers, might help to understand the permeation properties of K+ channels in general.Abbreviations CKC1in Coleoptile K + Channel inward rectifier - U membrane voltage - Iss steady-state currents - Itail tail currents Experiments were conducted in the laboratory of F.G. during the stay of RHas a guest professor sponsored by Special Project RAISA, subproject N2.1, paper N2155.  相似文献   

9.
In an attempt to understand the processes mediating ion transport within the root, the patch clamp technique was applied to protoplasts isolated from the cortex and stele of maize roots and their plasma membrane conductances investigated. In the whole-cell configuration, membrane hyperpolarization induced a slowly activating inwardly rectifying conductance in most protoplasts isolated from the root cortex. In contrast, most protoplasts isolated from the stele contained a slowly activating outwardly rectifying conductance upon plasma membrane depolarization. The reversal potential of the inward current indicated that it was primarily due to the movement of K+; the outwardly rectifying conductance was comparatively less selective for K+. Membrane hyperpolarization beyond a threshold of about ?70 mV induced inward currents. When EK was set negative of this threshold, inward currents activated negative of EK and no outward currents were observed positive of EK. Outward currents in the stelar protoplasts activated at potentials positive of ?85 mV. However, when EK was set positive of ?85 mV a small inward current was also observed at potentials negative (and slightly positive) of the equilibrium potential for K+. Inwardly and outwardly rectifying K+ channels were observed in outside-out patches from the plasma membrane of cortical and stelar cells, respectively. Characterization of these channels showed that they were likely to be responsible for the macroscopic ‘whole-cell’ currents. Inward and outward currents were affected differently by various K+ channel blockers (TEA+, Ba2+ and Cs+). In addition, Ca2+ above 1 mM partially blocked the inward current in a voltage-dependent manner but had little effect on the outward current. It is suggested that the inwardly rectifying conductance identified in protoplasts isolated from the cortex probably represents an important component of the low-affinity K+ uptake mechanism (mechanism II) identified in intact roots. The outwardly rectifying conductance identified in protoplasts isolated from the stele could play a role in the release of cations into the xylem vessels for transport to the shoot.  相似文献   

10.
Michael R. Blatt 《Planta》1987,170(2):272-287
The membrane electrical characteristics of stomatal guard cells in epidermal strips from Vicia faba L. and Commelina communis L. were explored using conventional electrophysiological methods, but with double-barrelled microelectrodes containing dilute electrolyte solutions. When electrodes were filled with the customary 1–3 M KCl solutions, membrane potentials and resistances were low, typically decaying over 2–5 min to near-30 mV and <0.2 k·cm2 in cells bathed in 0.1 mM KCl and 1 mM Ca2+, pH 7.4. By contrast, cells impaled with electrodes containing 50 or 200 mM K+-acetate gave values of-182±7 mV and 16±2 k·cm2 (input resistances 0.8–3.1 G, n=54). Potentials as high as (-) 282 mV (inside negative) were recorded, and impalement were held for up to 2 h without appreciable decline in either membrane parameter. Comparison of results obtained with several electrolytes indicated that Cl- leakage from the microelectrode was primarily responsible for the decline in potential and resistance recorded with the molar KCl electrolytes. Guard cells loaded with salt from the electrodes also acquired marked potential and conductance responses to external Ca2+, which are tentatively ascribed to a K+ conductance (channel) at the guard cell plasma membrane.Measurements using dilute K+-acetate-filled electrodes revealed, in the guard cells, electrical properties common to plant and fungal cell membranes. The cells showed a high selectivity for K+ over Na+ (permeability ratio PNa/PK=0.006) and a near-Nernstian potential response to external pH over the range 4.5–7.4 (apparent PH/PK=500–600). Little response to external Ca2+ was observed, and the cells were virtually insensitive to CO2. These results are discussed in the context of primary, charge-carrying transport at the guard cell plasma membrane, and with reference to possible mechanisms for K+ transport during stomatal movements. They discount previous notions of Ca2+-and CO2-mediated transport control. It is argued, also, that passive (diffusional) mechanisms are unlikely to contribute to K+ uptake during stomatal opening, despite membrane potentials which, under certain, well-defined conditions, lie negative of the potassium equilibrium potential likely prevailing.Abbreviations and symbols EGTA ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Mes 2-(N-morpholino) propanesulfornic acid - E equilibrium potential - Gm membrane conductance - Rin input resistance - Vm membrane potential  相似文献   

11.
12.
Summary Ionic conductances of rabbit osteoclasts were investigated using both whole-cell and cell-attached configurations of the patch-clamp recording technique. The predominant conductance found in these cells was an inwardly rectifying K+ conductance. Whole-cell currents showed an N-shaped current-voltage (I–13;V) relation with inward current activated at potentials negative to EK. When external K+ was varied, I-V curves shifted 53 mV/10-fold change in [K+]out, as predicted for a K+-selective channel. Inward current was blocked by Ba2+ and showed a time-dependent decline at negative potentials, which was reduced in Na+-free external solution. Inward single-channel currents were recorded in the cell-attached configuration. Single-channel currents were identified as inward-rectifier K+ channels based on the following observations: (i) Unitary I-V relations rectified, with only inward current resolved. (ii) Unitary conductance () was 31 pS when recorded in the cell-attached configuration with 140 mm K+ in the pipette and was found to be dependent on [K+]. (iii) Addition of Ba2+ to the pipette solution abolished single-channel events. We conclude that rabbit osteoclasts possess inwardly rectifying K+ channels which give rise to the inward current recorded at negative potentials in the whole-cell configuration. This inwardly rectifying K+ current may be responsible for setting the resting membrane potential and for dissipating electrical potential differences which arise from electrogenic transport of protons across the osteoclast ruffled border.This work was supported by The Arthritis Society and the Medical Research Council of Canada. M.E.M.K. was supported by a fellowship, S.J.D. a development Grant and S.M.S. a scholarship from the Medical Research Council. We thank Dr. Zu Gang Zheng for help with scanning microscopy.  相似文献   

13.
Summary Previous current/voltage (I/V) investigations of theChara K+ state have been extended by increasing the voltage range (up to +200 mV) through blocking the action potential with La3+. A region of negative slope was found in theI/V characteristics at positive PD's, similar to that already observed at PD's more negative than the resting level. These decreases in membrane currents at PD's more negative than –150 mV and at PD's close to 0 or positive are thought to arise from the K+ channel closure. Both the negative slope regions could be reversibly abolished by 0.1mm K+, 20mm Na+, more than 10mm Ca2+ or 5mm tetraethylammonium (TEA). The K+ channels are therefore blocked by TEA, closed by low [K+] o or high [Ca2+] o and are highly selective to K+ over Na+. With the K+ channels closed, the remainingI/V profile was approximately linear over the interval of 400 mV (suggesting a leakage current), but large rectifying currents were observed at PD's more positive than +50 mV. These currents showed a substantial decrease in high [Ca2+] o , sometimes displayed a slight shift to more positive PD's with increasing [K+] o and were unaffected by TEA or changes in [Na+] o . The slope of the linear part of theI/V profile was steeper in low [K+] o than in TEA or high [Na+] o (indicating participation of K+, but not Na+, in the leak current). Diethylstilbestrol (DES) was employed to inhibit the proton pump, but it was found that the leakage current and later the K+ channels were also strongly affected.  相似文献   

14.
Summary The effect of membrane potential on sodium-dependent calcium uptake by vesicles in an isolated cardiac sarcolemma preparation was examined. Initial time course studies showed that the reaction deviated from initial velocity conditions within minutes. This appeared to be due, in part, to loss of the sodium gradient. Assays carried out to 10 sec revealed a linear component of uptake (2 to 10 sec) and a faster component (complete by 2 sec). The latter was eliminated by loading the preparation with ethyleneglycol-bis-(-aminoethyl ether)N,N-tetraacetic acid (EGTA). This maneuver did not affect the slow component, and subsequent studies used preparations containing EGTA. Potassium Nernst potentials (E K), established by potassium gradients in the presence of valinomycin, were varied from –100 to +30 mV by changing [K+] o from 1.18 to 153.7mM ([K+] i =50mM). The initial velocity of sodium-dependent calcium uptake was stimulated twofold by changingE K from –100 to 0 mV and another twofold by raisingE K from 0 to +30 mV. For the total range ofE K and [K+] o , 32 to 36% of the increase appeared to reflect stimulation by extravesicular potassium. The remainder appeared to be due to membrane potential. The profile of sodium-dependent calcium uptake versusE K suggested that calcium influx through electrogenic sodium/calcium exchange may be much more affected by the positive region of the cardiac action potential than by the negative region.  相似文献   

15.
An electrogenic pump, a slowly activating K+ inward rectifier and an intermittent, spiky, K+ inward rectifier, have been identified in the plasmalemma of whole protoplasts from root cortical cells of wheat (Triticum) by the use of patch clamping techniques. Even with high external concentrations of K+ of 100 m m, the pump can maintain the membrane potential difference (PD) down to –180 mV, more negative than the electrochemical equilibrium potentials of the various ions in the system. The slowly activating K+ inward rectifier, apparent in about 23% of protoplasts, allows inward current flow when the membrane PD becomes more negative than the electrochemical equilibrium potential for K+ by about 50 mV. The current usually consists of two exponentially rising components, the time constant of one about 10 times greater than the other. The longer time constant is voltage dependent, while the smaller time constant shows little voltage dependence. The rectifier deactivates, on return of the PD to less negative levels, with a single exponential time course, whose time constant is strongly voltage dependent. The spiky K+ inward rectifier, present in about 68% of protoplasts, allows intermittent current, of considerable magnitude, through the plasmalemma at PDs usually more negative than about –140 mV. Patch clamp experiments on detached outside-out patches show that a possibly multi-state K+ channel, with maximum conductance greater than 400 pS, may constitute this rectifier. The paper also considers the role of the pump and the K+ inward rectifiers in physiological processes in the cell.We thank Don Mackenzie and Kay Morris for their valuable technical assistance, particularly in the preparation of protoplasts. The project is funded by the Australian Research Council.  相似文献   

16.
Summary To investigate the voltage dependence of the Na/K pump, current-voltage relations were determined in prophasearrested oocytes ofXenopus laevis. All solutions contained 5mm Ba2– and 20mm tetraethylammonium (TEA) to block K channels. If. in addition, the Na+/K+ pump is blocked by ouabain, K+-sensitive currents no larger than 50 nA/cm2 remain. Reductions in steady-state current (on the order of 700 nA/cm2) produced by 50 m ouabain or dihydro-ouabain or by K+ removal, therefore, primarily represent current generated by the Na/K pump. In Na-free solution containing 5mm K+, Na+/K+ pump current is relatively voltage independent over the potential range from –160 to +40 mV. If external [K+] is reduced below 0.5mm, negative slopes are observed over this entire voltage range. Similar results are seen in Na+- and Ca2+-free solutions in the presence of 2mm Ni2+, an experimental condition designed to prevent Na+/Ca2+ exchange. The occurrence of a negative slope can be explained by the voltage dependence of the apparent affinity for activation of the Na+/K+ pump by external K+, consistent with the existence of an external ion well for K binding. In 90mm Na+, 5mm K+ solution, Na+/K+ pump current-voltage curves at negative membrane potentials have a positive slope and can be described by a monotonically increasing sigmoidal function. At an extracellular [K+] of 1.3mm, a negative slope was observed at positive potentials. These findings suggest that in addition to a voltage-dependent step associated with Na+ translocation, a second voltage-dependent step that is dependent on external [K+], possibly external K+ binding, participates in the overall reaction mechanism of the Na+/K+ pump.  相似文献   

17.
Summary The electrical properties of a mouse interleukin (IL)-3-dependent cell line, FDC-P2, were examined using the tightseal whole-cell clamp technique. Under current clamp conditions with 140mM K+ in the pipette, the cells had a resting potential of –30 mV. Under voltage-clamp conditions, a transient outward current was elicited upon depolarization from a holding potential of –80 mV. The current was activated at potentials more positive than –10 mV and had a delayed-rectifying property. It showed rapid activation and slow inactivation during command steps. The current was abolished by Cs+ in the pipette, indicating that K+ is the charge carrier. The K+ current was suppressed by tetraethylammonium withK i of <0.1mM and was not affected by scorpion toxin. Recovery from inactivation was steeply voltage dependent: As the holding potential was more hyperpolarized, the recovery became faster. Thus, with a holding potential of –80 mV, the current showed slight use-dependent inactivation, while the current decreased prominently by repetitive depolarization at a holding potential of –40 mV. These properties of the K+ current are similar to those of thel-type K+ channel current in mature T lymphocytes. The K+ current in FDC-P2 cells was dramatically reduced after culture in the IL-3-free medium for 1–2 days. When IL-3 was re-added to the medium, the current was re-expressed. These observations suggest that expression of the K+ current depends on extracellular IL-3, and that the current may play some roles in proliferation of these cells.  相似文献   

18.
Summary We studied the influence of mucosal Ba2+ ions on the recently described (Zeiske & Van Driessche, 1979a, J. Membrane Biol. 47:77) transepithelial, mucosa towards serosa directed K+ transport in the skin ofRana temporaria. The transport parametersG (conductance), PD (potential difference),I sc (short-circuit current, K+ current), as well as the noise ofI sc were recorded. Addition of millimolar concentrations of Ba2+ to the mucosal K+-containing solution resulted in a sudden but quickly reversible drop inI sc.G andI sc decreased continuously with increasing Ba2+ concentration, (Ba2+) o . The apparent Michaelis constant of the inhibition by Ba2+ lies within the range 40–80 m. The apical membrane seems to remain permselective for K+ up to 500 m (Ba2+) o . Higher (Ba2+) o , however, appears to induce a shunt (PD falls,G increases). This finding made an accurate determination of the nature of the inhibition difficult but our results tend to suggest a K+-channel block by K+–Ba2+ competition. In the presence of Ba2+, the power spectrum of the K+ current shows a second Lorentzian component in the low-frequency range, in addition to the high-frequency Lorentzian caused by spontaneous K+-channel fluctuations (Van Driessche & Zeiske, 1980). Both Lorentzian components are only present with mucosal K+ and can be depressed by addition of Cs+ ions, thus indicating that Ba2+ ions induce K+-channel fluctuations. The dependence of the parameters of the induced Lorentzian on (Ba2+) o , shows a rise in the plateau values to a maximum around 60 m (Ba2+) o , followed by a sharp and progressive decrease to very low values. The corner frequency which reflects the rate of the Ba2+-induced fluctuations, however, increases quasi-linearly up to 1mm (Ba2+) o with a tendency to saturate at higher (Ba2+) o . Based on a three-state model for the K+ channel (having one open state, one closed by the spontaneous fluctuation and one blocked by Ba2+) computer calculations compared favorably with our results. The effect of Ba2+ could be explained by assuming reversible binding at the outer side of the apical K+ channel, thereby blocking the open channel in competition with K+. The association-dissociation of Ba2+ at its receptor site is thought to cause a chopping of the K+ current, resulting in modulated current fluctuations.  相似文献   

19.
20.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号