首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The enhancer of split locus and neurogenesis in Drosophila melanogaster   总被引:11,自引:0,他引:11  
Enhancer of split (E(spl)) is one of a group of so-called neurogenic genes of Drosophila. We describe two different types of E(spl) alleles, dominant and recessive, which exert opposite effects on both central and peripheral nervous system development. The only extant dominant allele determines a reduction in the number of central neurons and peripheral sensilla; this phenotype is not reduced by a normal complement of wild-type alleles. Since animals carrying a triploidy for the wild-type locus develop similar defects, the dominant allele is probably the result of a gain-of-function mutation. Several recessive alleles, obtained as revertants of the dominant allele, are loss-of-function mutations and determine considerable neural hyperplasia. The present evidence suggests that neural defects of E(spl) mutants are due to defective segregation of neural and epidermal lineages, leading to neural commitment of less or of more cells than in the wild type, depending upon whether the animals carry the dominant or any of the recessive alleles, respectively. Therefore, E(spl) formally behaves as a gene switching between neural and epidermal pathways.  相似文献   

3.
4.
Amino-acid starvation leads to an inhibition of cellular proliferation and the induction of programmed cell death (PCD) in the Drosophila ovary. Disruption of insulin signaling has been shown to inhibit the progression of oogenesis, but it is unclear whether this phenotype mimics starvation. Here, we investigate whether the insulin-mediated phosphoinositide kinase-3 pathway regulates PCD in mid oogenesis. We reasoned that under well-fed conditions, disruption of positive components of the insulin signaling pathway within the germline would mimic starvation and produce degenerating egg chambers. Surprisingly, mutants did not mimic starvation but instead produced many abnormal egg chambers in which the somatic follicle cells disappeared and the germline persisted. These abnormal egg chambers did not show an induction of caspases and lysosomes like that observed in wild-type (WT) degenerating egg chambers. Egg chambers from insulin signaling mutants were resistant to starvation-induced PCD, indicating that a complete block in insulin-signaling prevents the proper response to starvation. However, target of rapamycin (Tor) mutants did show a phenotype that mimicked WT starvation-induced PCD, indicating an insulin independent regulation of PCD via Tor signaling. These results suggest that inhibition of the insulin signaling pathway is not sufficient to regulate starvation-induced PCD in mid oogenesis. Furthermore, starvation-induced PCD is regulated by Tor signaling converging with the canonical insulin signaling pathway.  相似文献   

5.
Carney GE  Bender M 《Genetics》2000,154(3):1203-1211
Oogenesis in Drosophila is regulated by the steroid hormone ecdysone and the sesquiterpenoid juvenile hormone. Response to ecdysone is mediated by a heteromeric receptor composed of the EcR and USP proteins. We have identified a temperature-sensitive EcR mutation, EcR(A483T), from a previously isolated collection of EcR mutations. EcR(A483T) is predicted to affect all EcR protein products (EcR-A, EcR-B1, and EcR-B2) since it maps to a common exon encoding the ligand-binding domain. In wild-type females, we find that both EcR-A and EcR-B1 are expressed in nurse cells and follicle cells throughout oogenesis. EcR mutant females raised at permissive temperature and then shifted to restrictive temperature exhibit severe reductions in fecundity. Oogenesis in EcR mutant females is defective, and the spectrum of oogenic defects includes the presence of abnormal egg chambers and loss of vitellogenic egg stages. Our results demonstrate a requirement for EcR during female reproduction and suggest that EcR is required for normal oogenesis.  相似文献   

6.
Clathrin interactor 1 [CLINT1] (also called enthoprotin/EpsinR) is an Epsin N-terminal homology (ENTH) domain-containing adaptor protein that functions in anterograde and retrograde clathrin-mediated trafficking between the trans-Golgi network and the endosome. Removal of both Saccharomyces cerevisiae homologs, Ent3p and Ent5p, result in yeast that are viable, but that display a cold-sensitive growth phenotype and mistrafficking of various vacuolar proteins. Similarly, either knock-down or overexpression of vertebrate CLINT1 in cell culture causes mistrafficking of proteins. Here, we have characterized Drosophila CLINT1, liquid-facets Related (lqfR). LqfR is ubiquitously expressed throughout development and is localized to the Golgi and endosome. Strong hypomorphic mutants generated by imprecise P-element excision exhibit extra macrochaetae, rough eyes and are female sterile. Although essentially no eggs are laid, the ovaries do contain late-stage egg chambers that exhibit abnormal morphology. Germline clones reveal that LqfR expression in the somatic follicle cells is sufficient to rescue the oogenesis defects. Clones of mutant lqfR follicle cells have a decreased cell size consistent with a downregulation of Akt1. We find that while total Akt1 levels are increased there is also a significant decrease in activated phosphorylated Akt1. Taken together, these results show that LqfR function is required to regulate follicle cell size and signaling during Drosophila oogenesis.  相似文献   

7.
Twenty-four, second chromosome, dominant female sterile (Fs) mutations in Drosophila are described. Fs(2) were isolated at a frequency of approximately 1 per 1000 EMS-treated chromosomes screened. In comparison the isolation of frequency for second chromosome zygotic recessive lethal mutations was approximately 550 per 1000. Complementation analysis of the Fs(2) revertants showed that the 24 Fs(2) mutations identify 13-15 loci, calculated to be about 65-75% of the second chromosome genes EMS mutable to dominant female sterility. Two of the Fs(2) mutations are useful tools for the dominant female sterile technique: Fs(2)1 for induction and detection of germ-line clones and Fs(2)Ugra for follicle cell clones. Several of the Fs(2) mutations bring about novel mutant phenotypes. Seven of them alter egg shape, whereas the others arrest development primarily at two stages: around fertilization by five Fs(2) and during cleavage divisions [by Fs(2) in three loci]. The remaining that allow development to the larval stage of differentiation include four new dorsal alleles and one dominant torso allele. Analysis of germ-line chimeras revealed that with two exceptions all the Fs(2) mutations are germ-line dependent. The Fs(2) mutations were mapped mainly on the basis of mitotic recombination induced in the female germ-line cells of adult females. That most of the Fs(2) may be gain-of-function mutations is indicated by the unusual behavior of the Fs+ germ-line clones and also by the fact that 90% of the could be induced to revert.  相似文献   

8.
Germ cells require intimate associations with surrounding somatic cells during gametogenesis. During oogenesis, gap junctions mediate communication between germ cells and somatic support cells. However, the molecular mechanisms by which gap junctions regulate the developmental processes during oogenesis are poorly understood. We have identified a female sterile allele of innexin2 (inx2), which encodes a gap junction protein in Drosophila. In females bearing this inx2 allele, cyst formation and egg chamber formation are impaired. In wild-type germaria, Inx2 is strongly expressed in escort cells and follicle cells, both of which make close contact with germline cells. We show that inx2 function in germarial somatic cells is required for the survival of early germ cells and promotes cyst formation, probably downstream of EGFR pathway, and that inx2 function in follicle cells promotes egg chamber formation through the regulation of DE-cadherin and Bazooka (Baz) at the boundary between germ cells and follicle cells. Furthermore, genetic experiments demonstrate that inx2 interacts with the zero population growth (zpg) gene, which encodes a germline-specific gap junction protein. These results indicate a multifunctional role for Inx2 gap junctions in somatic support cells in the regulation of early germ cell survival, cyst formation and egg chamber formation. Inx2 gap junctions may mediate the transfer of nutrients and signal molecules between germ cells and somatic support cells, as well as play a role in the regulation of cell adhesion.  相似文献   

9.
In Drosophila the posterior positioning of the oocyte within the germline cluster defines the initial asymmetry during oogenesis. From this early event, specification of both body axes is controlled through reciprocal signaling between germline and soma. Here it is shown that the mutation hold up (hup) affects oocyte positioning in the egg chamber, follicle cell fate and localization of different markers in the growing oocytes. This occurs not only in dicephalic egg chambers, but also in oocytes normally located at the posterior. Generation of mosaic egg chambers indicates that hup has to be at least somatically required. Possible interactions of hup with Egfr, the Drosophila epidermal growth factor receptor homolog, have been investigated in homozygous double mutants constructed by recombination. Stronger new ovarian phenotypes have been obtained, the most striking being accumulation of follicle cells in multiple layers posteriorly to the oocyte. It is proposed that the hup gene product is a component of the molecular machinery that leads to the establishment of polarity both in follicle cell layer and oocyte, acting in the same or in a parallel pathway of Egfr.  相似文献   

10.
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.  相似文献   

11.
Vlachos S  Harden N 《Genetics》2011,187(2):501-512
During Drosophila oogenesis, basally localized F-actin bundles in the follicle cells covering the egg chamber drive its elongation along the anterior-posterior axis. The basal F-actin of the follicle cell is an attractive system for the genetic analysis of the regulation of the actin cytoskeleton, and results obtained in this system are likely to be broadly applicable in understanding tissue remodeling. Mutations in a number of genes, including that encoding the p21-activated kinase Pak, have been shown to disrupt organization of the basal F-actin and in turn affect egg chamber elongation. pak mutant egg chambers have disorganized F-actin distribution and remain spherical due to a failure to elongate. In a genetic screen to identify modifiers of the pak rounded egg chamber phenotype several second chromosome deficiencies were identified as suppressors. One suppressing deficiency removes the rho1 locus, and we determined using several rho1 alleles that removal of a single copy of rho1 can suppress the pak phenotype. Reduction of any component of the Rho1-activated actomyosin contractility pathway suppresses pak oogenesis defects, suggesting that Pak counteracts Rho1 signaling. There is ectopic myosin light chain phosphorylation in pak mutant follicle cell clones in elongating egg chambers, probably due at least in part to mislocalization of RhoGEF2, an activator of the Rho1 pathway. In early egg chambers, pak mutant follicle cells have reduced levels of myosin phosphorylation and we conclude that Pak both promotes and restricts myosin light chain phosphorylation in a temporally distinct manner during oogenesis.  相似文献   

12.
The number of Drosophila egg chambers is controlled by the nutritional status of the female. There is a developmental checkpoint at stage 8, which is controlled by BR-C in the follicle cells along with ecdysteroid. During this period, developmental decision is made in each egg chamber to determine if it will develop or die. During nutritional shortage, inducing apoptosis in the nurse cells of stages 8 and 9 egg chambers reduces the number of egg chambers. We show that ecdysone response genes E75A and E75B are involved in inducing or suppressing apoptosis. It is thus possible that the E75 isoforms A and B are involved in the decision to develop or die in oogenesis. We have established part of the pathway by which ecdysone response genes control apoptosis of the nurse cells and hence select between degeneration or development of individual egg chambers at stages 8 and 9.  相似文献   

13.
Programmed cell death is the most common fate of female germ cells in Drosophila and many animals. In Drosophila, oocytes form in individual egg chambers that are supported by germline nurse cells and surrounded by somatic follicle cells. As oogenesis proceeds, 15 nurse cells die for every oocyte that is produced. In addition to this developmentally regulated cell death, groups of germ cells or entire egg chambers may be induced to undergo apoptosis in response to starvation or other insults. Recent findings suggest that these different types of cell death involve distinct genetic pathways. This review focuses on progress towards elucidating the molecular mechanisms acting during programmed cell death in Drosophila oogenesis.  相似文献   

14.
We have characterized the function of a new neurogenic locus, brainiac (brn), during oogenesis. Homozygous brn females lay eggs with fused dorsal appendages, a phenotype associated with torpedo (top) alleles of the Drosophila EGF receptor (DER) locus. By constructing double mutant females for both brn and top, we have found that brn is required for determining the dorsal-ventral polarity of the ovarian follicle. However, embryos from mature brn eggs develop a neurogenic phenotype which can be zygotically rescued if a wild-type sperm fertilizes the egg. This is the first instance of a Drosophila gene required for determination of dorsal-ventral follicle cell fates that is not required for determination of embryonic dorsal-ventral cell fates. The temperature-sensitive period for brn dorsal-ventral patterning begins at the inception of vitellogenesis. The interaction between brn and DER is also required for at least two earlier follicle cell activities which are necessary to establish the ovarian follicle. Prefollicular cells fail to migrate between each oocyte/nurse cell complex, resulting in follicles with multiple sets of oocytes and nurse cells. brn and DER function is also required for establishing and/or maintaining a continuous follicular epithelium around each oocyte/nurse cell complex. These brn functions as well as the brn requirement for determination of dorsal-ventral polarity appear to be genetically separable functions of the brn locus. Genetic mosaic experiments show that brn is required in the germline during these processes whereas the DER is required in the follicle cells. We propose that brn may be part of a germline signaling pathway differentially regulating successive DER-dependent follicle cell activities of migration, division and/or adhesion and determination during oogenesis. These experiments indicate that brn is required in both tyrosine kinase and neurogenic intercellular signaling pathways. Moreover, the functions of brn in oogenesis are distinct from those of Notch and Delta, two other neurogenic loci that are known to be required for follicular development.  相似文献   

15.
To understand how our brains function, it is necessary to know how neurons position themselves and target their axons and dendrites to their correct locations. Several evolutionarily conserved axon guidance molecules have been shown to help navigate axons to their correct target site. The Caenorhabditis elegans Eph receptor tyrosine kinase (RTK), VAB-1, has roles in early neuroblast and epidermal cell movements, but its roles in axon guidance are not well understood. Here, we report that mutations that disrupt the VAB-1 Eph receptor tyrosine kinase cause incompletely penetrant defects in axonal targeting and neuronal cell body positioning. The predominant axonal defect in vab-1 mutant animals was an overextension axon phenotype. Interestingly, constitutively active VAB-1 tyrosine kinase signaling caused a lack of axon outgrowth or an early termination phenotype, opposite to the loss-of-function phenotype. The combination of loss-of-function and gain-of-function analyses suggests that the VAB-1 Eph RTK is required for targeting or limiting axons and neuronal cells to specific regions, perhaps by transducing a repellent or stop cue.  相似文献   

16.
17.
The steroid hormone ecdysone regulates larval development and metamorphosis in Drosophila melanogaster through a complex genetic hierarchy that begins with a small set of early response genes. Here, we present data indicating that the ecdysone response hierarchy also mediates egg chamber maturation during mid-oogenesis. E75, E74 and BR-C are expressed in a stage-specific manner while EcR expression is ubiquitous throughout oogenesis. Decreasing or increasing the ovarian ecdysone titer using a temperature-sensitive mutation or exogenous ecdysone results in corresponding changes in early gene expression. The stage 10 follicle cell expression of E75 in wild-type, K10 and EGF receptor (Egfr) mutant egg chambers reveals regulation of E75 by both the Egfr and ecdysone signaling pathways. Genetic analysis indicates a germline requirement for ecdysone-responsive gene expression. Germline clones of E75 mutations arrest and degenerate during mid-oogenesis and EcR germline clones exhibit a similar phenotype, demonstrating a functional requirement for ecdysone responsiveness during the vitellogenic phase of oogenesis. Finally, the expression of Drosophila Adrenodoxin Reductase increases during mid-oogenesis and clonal analysis confirms that this steroidogenic enzyme is required in the germline for egg chamber development. Together these data suggest that the temporal expression profile of E75, E74 and BR-C may be a functional reflection of ecdysone levels and that ecdysone provides temporal signals regulating the progression of oogenesis and proper specification of dorsal follicle cell fates.  相似文献   

18.
 During Drosophila oogenesis the body axes are determined by signaling between the oocyte and the somatic follicle cells that surround the egg chamber. A key event in the establishment of oocyte anterior-posterior polarity is the differential patterning of the follicle cell epithelium along the anterior-posterior axis. Both the Notch and epithelial growth factor (EGF) receptor pathways are required for this patterning. To understand how these pathways act in the process we have analyzed markers for anterior and posterior follicle cells accompanying constitutive activation of the EGF receptor, loss of Notch function, and ectopic expression of Delta. We find that a constitutively active EGF receptor can induce posterior fate in anterior but not in lateral follicle cells, showing that the EGF receptor pathway can act only on predetermined terminal cells. Furthermore, Notch function is required at both termini for appropriate expression of anterior and posterior markers, while loss of both the EGF receptor and Notch pathways mimic the Notch loss-of-function phenotype. Ectopic expression of the Notch ligand, Delta, disturbs EGF receptor dependent posterior follicle cell differentiation and anterior-posterior polarity of the oocyte. Our data are consistent with a model in which the Notch pathway is required for early follicle cell differentiation at both termini, but is then repressed at the posterior for proper determination of the posterior follicle cells by the EGF receptor pathway. Received: 5 November 1998 / Accepted: 14 December 1998  相似文献   

19.
The border cells of Drosophila are a model system for coordinated cell migration. Ecdysone signaling has been shown to act as the timing signal to initiate the migration process. Here we find that mutations in phantom (phm), encoding an enzyme in the ecdysone biosynthesis pathway, block border cell migration when the entire follicular epithelium of an egg chamber is mutant, even when the associated germline cells (nurse cells and oocyte) are wild-type. Conversely, mutant germline cells survive and do not affect border cell migration, as long as the surrounding follicle cells are wild-type. Interestingly, even small patches of wild-type follicle cells in a mosaic epithelium are sufficient to allow the production of above-threshold levels of ecdysone to promote border cell migration. The same phenotype is observed with mutations in shade (shd), encoding the last enzyme in the pathway that converts ecdysone to the active 20-hydroxyecdysone. Administration of high 20-hydroxyecdysone titers in the medium can also rescue the border cell migration phenotype in cultured egg chambers with an entirely phm mutant follicular epithelium. These results indicate that in normal oogenesis, the follicle cell epithelium of each individual egg chamber must supply sufficient ecdysone precursors, leading ultimately to high enough levels of mature 20-hydroxyecdysone to the border cells to initiate their migration. Neither the germline, nor the neighboring egg chambers, nor the surrounding hemolymph appear to provide threshold amounts of 20-hydroxyecdysone to do so. This “egg chamber autonomous” ecdysone synthesis constitutes a useful way to regulate the individual maturation of the asynchronous egg chambers present in the Drosophila ovary.  相似文献   

20.
We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号