首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The uptake of the basic amino acids arginine, ornithine, and lysine was studied in membrane vesicles derived from cells of Lactococcus lactis which were fused with liposomes in which beef heart mitochondrial cytochrome c oxidase was incorporated as a proton motive force (PMF)-generating system. In the presence of ascorbate N,N,N'N'-tetramethylphenylenediamine-cytochrome c as the electron donor, these fused membranes accumulated lysine but not ornithine or arginine under aerobic conditions. The mechanism of energy coupling to lysine transport was examined in membrane vesicles of L. lactis subsp. cremoris upon imposition of an artificial electrical potential (delta psi) or pH gradient or both and in fused membranes of these vesicles with cytochrome c oxidase liposomes in which the delta psi and delta pH were manipulated with ionophores. Lysine uptake was shown to be coupled to the PMF and especially to the delta psi, suggesting a proton symport mechanism. The lysine carrier appeared to be specific for L and D isomers of amino acids with a guanidine or NH2 group at the C6 position of the side chain. Uptake of lysine was blocked by p-chloromercuribenzene sulfonic acid but not by maleimides. Counterflow of lysine could not be detected in L. lactis subsp. cremoris, but in the arginine-ornithine antiporter-containing L. lactis subsp. lactis, rapid counterflow occurred. Homologous exchange of lysine and heterologous exchange of arginine and lysine were mediated by this antiporter. PMF-driven lysine transport in these membranes was noncompetitively inhibited by arginine, whereas the uptake of arginine was enhanced by lysine. These observations are compatible with a model in which circulation of lysine via the lysine carrier and the arginine-ornithine antiporter leads to accumulation of arginine.  相似文献   

2.
Arginine metabolism in lactic streptococci.   总被引:35,自引:14,他引:21       下载免费PDF全文
Streptococcus lactis metabolizes arginine via the arginine deiminase pathway producing ornithine, ammonia, carbon dioxide, and ATP. In the four strains of S. lactis examined, the specific activities of arginine deiminase and ornithine transcarbamylase were 5- to 10-fold higher in galactose-grown cells compared with glucose- or lactose-grown cells. The addition of arginine increased the specific activities of these two enzymes with all growth sugars. The specific activity of the third enzyme involved in arginine metabolism (carbamate kinase) was not altered by the composition of the growth medium. In continuous cultures arginine deiminase was not induced, and arginine was not metabolized, until glucose limitation occurred. In batch cultures the metabolism of glucose and arginine was sequential, whereas galactose and arginine were metabolized concurrently, and the energy derived from arginine metabolism was efficiently coupled to growth. No arginine deiminase activity was detected in the nine Streptococcus cremoris strains examined, thus accounting for their inability to metabolize arginine. All nine strains of S. cremoris had specific activities of carbamate kinase similar to those found in S. lactis, but only five S. cremoris strains had ornithine transcarbamylase activity.  相似文献   

3.
【目的】寻找精氨酸代谢途径中与酸胁迫相关的关键作用因素。【方法】通过在Lactococcus lactis NZ9000中分别过量表达来源于Lactobacillus casei Zhang的精氨酰琥珀酸合成酶(ASS)和精氨酰琥珀酸裂解酶(ASL)改变精氨酸代谢提高酸胁迫抗性。【结果】与对照菌株对比,重组菌株在环境胁迫下表现了较高的生长性能、存活率和发酵性能。生理学分析发现,酸胁迫环境下,重组菌株细胞有较高的胞内NH4+、ATP含量和H+-ATPase活性,并显著提高了精氨酸脱亚胺酶(ADI)途径中的氨基酸浓度。进一步的转录分析发现,天冬氨酸合成、精氨酸代谢相关的基因转录水平上调。【结论】在L.lactis NZ9000中过量表达ASS或ASL可以引发精氨酸代谢流量的上调,进而提高了细胞的多种胁迫抗性。精氨酸合成途径广泛存在于多种微生物中,为微生物,尤其是工业微生物提高胁迫抗性提供了新思路。  相似文献   

4.
Enterococcus faecalis ATCC 11700 is able to use arginine and the diamine agmatine as a sole energy source. Via the highly homologous deiminase pathways, arginine and agmatine are converted into CO2, NH3, and the end products ornithine and putrescine, respectively. In the arginine deiminase pathway, uptake of arginine and excretion of ornithine are mediated by an arginine-ornithine antiport system. The translocation of agmatine was studied in whole cells grown in the presence of arginine, agmatine, or glucose. Rapid uncoupler-insensitive uptake of agmatine was observed only in agmatine-grown cells. A high intracellular putrescine pool was maintained by these cells, and this pool was rapidly released by external putrescine or agmatine but not by arginine or ornithine. Kinetic analysis revealed competitive inhibition for uptake between putrescine and agmatine. Agmatine uptake by membrane vesicles was observed only when the membrane vesicles were preloaded with putrescine. Uptake of agmatine was driven by the outwardly directed putrescine concentration gradient, which is continuously sustained by the metabolic process. Uptake of agmatine and extrusion of putrescine by agmatine-grown cells of E. faecalis appeared to be catalyzed by an agmatine-putrescine antiporter. This transport system functionally resembled the previously described arginine-ornithine antiport, which was exclusively induced when the cells were grown in the presence of arginine.  相似文献   

5.
Uptake of phosphate by Streptococcus lactis ML3 proceeds in the absence of a proton motive force, but requires the synthesis of ATP by either arginine or lactose metabolism. The appearance of free Pi internally in arginine-metabolizing cells corresponded quantitatively with the disappearance of extracellular phosphate. Phosphate transport was essentially unidirectional, and phosphate concentration gradients of up to 10(5) could be established. Substrate specificity studies of the transport system indicated no preference for either mono- or divalent phosphate anion. The activity of the phosphate transport system was affected by the intracellular Pi concentration by a feedback inhibition mechanism. Uncouplers and ionophores which dissipate the pH gradient across the cytoplasmic membrane inhibited phosphate transport at acidic but not at alkaline pH values, indicating that transport activity is regulated by the internal proton concentration. Phosphate uptake driven by arginine metabolism increased with the intracellular pH with a pKa of 7.3. Differences in transport activity with arginine and lactose as energy sources are discussed.  相似文献   

6.
The kinetic mechanism and specificity of the arginine-ornithine antiporter was investigated in membrane vesicles derived from Lactococcus lactis. Membrane vesicles loaded with ornithine, and diluted into an arginine-free medium, rapidly released a limited amount of ornithine during the first seconds of incubation. The amount of ornithine released was independent of the amount initially present on the inside and roughly matched the number of ornithine-binding sites in the membrane. Net flow of ornithine was only observed in membrane vesicles derived from induced cells and blocked by p-chloromercuribenzene sulfonic acid. These results suggest that net flow of ornithine is caused by a single turnover of the antiporter. With saturating concentrations of arginine in the external medium, efflux of ornithine was stoichiometrically coupled to uptake of arginine. Arginine-ornithine exchange and net flow of ornithine are electrically silent and not regulated by the electrical potential. The kinetics of the homologous exchange reactions indicate that the Vmax values for arginine and ornithine uptake are comparable, whereas the apparent Kt values differ. No major sidedness of the apparent Kt values are observed for both surfaces of the cytoplasmic membrane. Various basic amino acid analogues, including optical isomers, are transported as well, albeit with different efficiencies (Vmax/Kt). Evidence for a competitive character of arginine and ornithine interactions for binding sites on the antiporter are provided by transport and binding measurements. The Vmax and apparent Kt for arginine uptake increases with increasing internal ornithine, with little effect on the ratio of Vmax to apparent Kt. These results are discussed in terms of a simple carrier model in which the substrate-binding site is presented alternately to the two surfaces of the membrane as in a Ping Pong mechanism for enzyme kinetics.  相似文献   

7.
葡萄酒苹果酸-乳酸菌精氨酸代谢研究概况   总被引:4,自引:0,他引:4  
葡萄酒苹果酸-乳酸菌的精氨酸代谢会导致葡萄酒中氨基甲酸乙酯含量的增加,从而严重影响葡萄酒的饮用安全性。近年来研究表明,葡萄酒苹果酸-乳酸菌的精氨酸代谢途径是精氨酸脱亚氨基酶途径(Arginine deiminasepathway,简称ADI途径)。系统分析苹果酸-乳酸菌的ADI途径、精氨酸转运机制、ADI途径酶的调节等方面的研究进展,阐明葡萄酒苹果酸-乳酸菌的精氨酸代谢对酿造优质葡萄酒具有重要的理论和实际意义。  相似文献   

8.
In the absence of oxygen and nitrate, Pseudomonas aeruginosa metabolizes arginine via the arginine deiminase pathway, which allows slow growth on rich media. The conversion of arginine to ornithine, CO2, and NH3 is coupled to the production of ATP from ADP. The enzymes of the arginine deiminase pathway are organized in the arcDABC operon. The arcD gene encodes a hydrophobic polytopic membrane protein. Translocation of arginine and ornithine in membrane vesicles derived from an Escherichia coli strain harboring a recombinant plasmid carrying the arcD gene was studied. Arginine and ornithine uptake was coupled to the proton motive force with a bias toward the transmembrane electrical potential. Accumulated ornithine was readily exchangeable for external arginine or lysine. The exchange was several orders of magnitude faster than proton motive force-driven transport. The ArcD protein was reconstituted in proteoliposomes after detergent solubilization of membrane vesicles. These proteoliposomes mediate a stoichiometric exchange between arginine and ornithine. It is concluded that the ArcD protein is a transport system that catalyzes an electroneutral exchange between arginine and ornithine to allow high-efficiency energy conversion in the arginine deiminase pathway.  相似文献   

9.
All of the lactic streptococci examined except Streptococcus lactis ML8 fermented galactose to lactate, formate, acetate, and ethanol. The levels of pyruvate-formate lyase and lactate dehydrogenase were elevated and reduced, respectively, in galactose-grown cells compared with glucose- or lactose-grown cells. Reduced intracellular levels of both the lactate dehydrogenase activator (fructose, 1,6-diphosphate) and pyruvate-formate lyase inhibitors (triose phosphates) appeared to be the main factors involved in the diversion of lactate to the other products. S. lactis ML8 produced only lactate from galactose, apparently due to the maintenance of high intracellular levels of fructose 1,6-diphosphate and triose phosphates. The growth rates of all 10 Streptococcus cremoris strains examined decreased markedly with galactose concentrations below about 30 mM. This effect appeared to be correlated with uptake predominantly by the low-affinity galactose phosphotransferase system and initial metabolism via the D-tagatose 6-phosphate pathway. In contrast, with four of the five S. lactis strains examined, galactose uptake and initial metabolism involved more extensive use of the high-affinity galactose permease and Leloir pathway. With these strains the relative flux of galactose through the alternate pathways would depend on the exogenous galactose concentration.  相似文献   

10.
The formation of the arginine deiminase pathway enzymes in Streptococcus faecalis ATCC 11700 was investigated. The addition of arginine to growing cells resulted in the coinduction of arginine diminase (EC 3.5.3.6), ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3). Growth on glucose-arginine or on glucose-fumarate-arginine produced a decrease in the specific activity of the arginine fermentation system. Aeration had a weak repressing effect on the arginine deiminase pathway enzymes in cells growing on arginine as the only added substrate. By contrast, depending on the growth phase, a marked repression of the pathway by oxygen was observed in cells growing on glucose-arginine. We hypothesize that, in S. faecalis, the ATP pool is an important signal in the regulation of the arginine deiminase pathway. Mutants unable to utilize arginine as an energy source, isolated from the wild type, exhibited four distinct phenotypes. In group I the three enzymes of the arginine deiminase pathway were present and probably affected in the arginine uptake system. Group II mutants had no detectable arginine deiminase, whereas group III mutants had low levels of ornithine carbamoyltransferase. Group IV mutants were defective for all three enzymes of the pathway.  相似文献   

11.
The arginine deiminase (ADI) pathway in Pseudomonas aeruginosa serves to generate ATP. The three enzymes involved, ADI, catabolic ornithine carbamoyltransferase and carbamate kinase, are induced by oxygen limitation and encoded by the contiguous arcABC genes. A 1.5-kb region upstream from arcABC was sequenced and found to contain an open reading frame, arcD, coding for a hydrophobic polypeptide of 52 kDa. The content and distribution of hydrophobic amino acids suggest that the arcD gene product may be a transmembrane protein. When arcD was fused to an Escherichia coli promoter, the ArcD protein was synthesized in E. coli maxicells and detected in the membrane fraction. In sodium dodecyl sulfate-polyacrylamide-gel electrophoresis the ArcD protein migrated like a 32-kDa protein; such anomalous electrophoretic mobility is known for other highly hydrophobic proteins. Mutations in arcD rendered the cells unable to utilize extracellular arginine as an energy source. Since anaerobic arginine consumption and ornithine release are coupled in P. aeruginosa, it is proposed that arcD specifies an arginine: ornithine antiporter or a part thereof. Insertions of IS21 or Tn1725 in arcD had a strong polar effect on the expression of the arcAB enzymes, indicating that the arc genes are organized as an arcDABC operon.  相似文献   

12.
Ornithine transport and exchange in Streptococcus lactis.   总被引:2,自引:2,他引:0       下载免费PDF全文
Resting cells of Streptococcus lactis 133 appeared to accumulate [14C]ornithine to a high concentration in the absence of an exogenous energy source. However, analysis of intracellular amino acid pool constituents and results of transport experiments revealed that the accumulation of ornithine represented a homoexchange between extracellular [14C]ornithine and unlabeled ornithine in the cell. The energy-independent exchange of ornithine was not inhibited by proton-conducting uncouplers or by metabolic inhibitors. Intracellular [14C]ornithine was retained by resting cells after suspension in a buffered medium. However, addition of unlabeled ornithine to the suspension elicited rapid exit of labeled amino acid. The initial rate of exit of [14C]ornithine was dependent on the concentration of unlabeled ornithine in the medium, but this accelerative exchange diffusion process caused no net loss of amino acid. By contrast, the presence of a fermentable energy source caused a rapid expulsion of and net decrease in the concentration of intracellular ornithine. Kinetic analyses of amino acid transport demonstrated competitive inhibition between lysine and ornithine, and data obtained by two-dimensional thin-layer chromatography established the heteroexchange of these basic amino acids. The effects of amino acids and of ornithine analogs on both entry and exit of [14C]ornithine have been examined. The data suggest that a common carrier mediates the entry and exchange of lysine, arginine, and ornithine in cells of S. lactis.  相似文献   

13.
14.
In Streptococcus lactis ML3 and Streptococcus cremoris Wg2 the uptake of glutamate and glutamine is mediated by the same transport system, which has a 30-fold higher affinity for glutamine than for glutamate at pH 6.0. The apparent affinity constant for transport (KT) of glutamine is 2.5 +/- 0.3 microM, independent of the extracellular pH. The KTS for glutamate uptake are 3.5, 11.2, 77, and 1200 microM at pH 4.0, 5.1, 6.0, and 7.0, respectively. Recalculation of the affinity constants based on the concentration of glutamic acid in the solution yield KTS of 1.8 +/- 0.5 microM independent of the external pH, indicating that the protonated form of glutamate, i.e., glutamic acid, and glutamine are the transported species. The maximal rates of glutamate and glutamine uptake are independent of the extracellular pH as long as the intracellular pH is kept constant, despite large differences in the magnitude and composition of the components of the proton motive force. Uptake of glutamate and glutamine requires the synthesis of ATP either from glycolysis or from arginine metabolism and appears to be essentially unidirectional. Cells are able to maintain glutamate concentration gradients exceeding 4 X 10(3) for several hours even in the absence of metabolic energy. The t1/2s of glutamate efflux are 2, 12, and greater than 30 h at pH 5.0, 6.0, and 7.0, respectively. After the addition of lactose as energy source, the rate of glutamine uptake and the level of ATP are both very sensitive to arsenate. When the intracellular pH is kept constant, both parameters decrease approximately in parallel (between 0.2 and 1.0 mM ATP) with increasing concentrations of the inhibitor. These results suggest that the accumulation of glutamate and glutamine is energized by ATP or an equivalent energy-rich phosphorylated intermediate and not by the the proton motive force.  相似文献   

15.
AIMS: The aim of this paper was to study if homofermentative strains (Lacobacillus plantarum) capable of malolactic fermentation in wine can degrade arginine via the ADI pathway. METHODS AND RESULTS: Homofermentative lactic acid bacteria (LAB) isolated from a typical red wine were investigated for their ability to produce citrulline. Citrulline was formed suggesting that the arginine metabolism takes place via the arginine deiminase (ADI) pathway and not via the arginase/urease pathway. Ammonia was also detected with Nessler's reagent, and all the strains examined were able to produce ammonia. Identification of homofermentative LAB was performed using 16S ribosomal sequence analysis. The strains were further classified as belonging to L. plantarum species. Furthermore, the genes encoding for the three pathway enzymes (ADI, ornithine transcarbamylase, carbamate kinase) were partially cloned and gene expression was performed at two different pH values (3.6 and 4.5). CONCLUSIONS: The results suggest that citrulline production in wine, could be performed by homofermentative LAB. SIGNIFICANCE AND IMPACT OF THE STUDY: Homofermentative malolactic bacteria (L. plantarum) may degrade arginine through the ADI pathway.  相似文献   

16.
The arcA gene that encodes arginine deiminase (ADI, EC 3.5.3.6)--a key enzyme of the ADI pathway--was cloned from Lactococcus lactis ssp. lactis ATCC 7962. The deduced amino acid sequence of the arcA gene showed high homology with the arcA gene from Lactobacillus plantarum (99%) and from Lactobacillus sakei (60%), respectively. The arcA gene from Lc. lactis spp. lactis ATCC 7962 was expressed in soluble fraction of recombinant Escherichia coli BL21. ADI produced from Lc. lactis spp. lactis ATCC 7962 (LADI) in E. coli BL21 (DE3) was purified using sequential Q-Sepharose anion exchange and Sephacryl S-200 gel filtration column chromatography. The final yield of LADI in the purification procedure was 63.5%, and the specific activity was 140.27 U/mg. The presence of purified LADI was confirmed by N-terminal sequencing and determination of the molecular mass. The LADI had a molecular mass of about 140 kDa, and comprised a homotrimer of 46 kDa in the native condition. LADI exhibited only 35% amino acid sequence homology with ADI from Mycoplasma arginini. However, LADI shared a similar three dimensional structure. The K(M) and V(max) values for arginine were 8.67+/-0.045 mM (mean+/-SD) and 344.83+/-1.79 micromol/min/mg, respectively, and the optimum temperature and pH for the production of LADI were 60 degrees C and 7.2.  相似文献   

17.
Growth of Tetrahymena thermophila in a synthetic nutrient medium with or without the essential amino acid L-arginine was studied in the presence or absence of the arginine metabolites L-citrulline and L-ornithine and the polyamines putrescine, spermidine, and spermine. The effects of the growth conditions on the stimulations of the enzymes of the arginine metabolic and polyamine biosynthetic pathway, arginine deiminase (ADI), citrulline hydrolase (CH), ornithine decarboxylase (ODC), and ornithine-oxo-acid aminotransferase were determined. Tetrahymena cells were unable to grow in the absence of L-arginine and the amino-acid utilization was greatly impaired. None of the metabolites or polyamines was able to substitute for arginine. In the presence of arginine, Tetrahymena cultures grew well and citrulline and ornithine did not alter the growth behaviour in any way. In the presence of putrescine, the lag period was decreased from 3 h to 2 h. Spermidine and spermine acted similar to putrescine but less pronounced. The stimulation of the activity of ADI, the key enzyme of arginine degradation, was absolutely dependent upon the presence of arginine in the medium: in the absence of arginine, the low ADI activity which was present in the cells before inoculation was decreased to zero levels within 30 min. In the presence of arginine, the stimulation of ADI was not altered by citrulline and ornithine but putrescine, spermidine, and spermine decreased ADI-stimulation to half of the control values. The stimulation of CH activity in the presence of arginine was not altered by any added metabolite or polyamine. In the media without arginine, stimulation of CH was greatly reduced, in the presence of ornithine more than in its absence, and even more in the presence of putrescine and spermidine. Stimulation of ODC activity in the presence of arginine was not affected by citrulline and ornithine but in the presence of polyamines it was rapidly decreased to unstimulated levels after an initial ca. 10-fold increase. The "hyperstimulation" of ODC in the absence of free arginine was reduced to normal in the presence of citrulline, the stimulation was decreased even below normal levels in the presence of ornithine and polyamines decreased ODC activity to zero levels. O delta T activity was stimulated more in the presence of arginine than in its absence. In both cases the stimulation was enhanced in the presence of polyamines and only in the absence of arginine--by ornithine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
In a recent communication (Thompson, J., Curtis, M. A., and Miller, S.P.F. (1986) J. Bacteriol. 167, 522-529) we described the purification and characterization of N5-(1-carboxyethyl)ornithine from cells of Streptococcus lactis 133. This unusual amino acid has not previously been found in nature. Radiotracer experiments presented here reveal that exogenous [14C]ornithine serves as the precursor for biosynthesis of [14C]arginine, [14C]N5-(1-carboxyethyl)ornithine, and [14C]N5-acetylornithine by cells of S. lactis K1 during growth in a defined medium lacking arginine. In the absence of both arginine and ornithine, cells of S. lactis K1 can also generate intracellular [14C]N5-(1-carboxyethyl)ornithine from exogenous [14C]glutamic acid. Previously we showed that the properties of N5-(1-carboxyethyl)ornithine prepared from S. lactis were identical to one of the two diastereomers [2S, 7S) or (2S, 7R] present in a synthetic preparation of (2S, 7RS)-N5-(1-carboxyethyl)ornithine. The two diastereomers have now been unambiguously synthesized by an Abderhalden-Haase condensation between (2S)-N2-t-butoxycarbonyl-ornithine and the chiral (2S)-, and (2R)-bromopropionates. By 13C-NMR spectroscopy it has been established that the preparation from S. lactis is exclusively (2S, 7S)-N5-(1-carboxyethyl)ornithine. has been demonstrated in a cell-free extract of S. lactis 133. The requirements for ornithine, pyruvic acid, and NAD(P)H suggest that biosynthesis of N5-(1-carboxyethyl)ornithine occurs via a reductive condensation mechanism. A general survey revealed that N5-(1-carboxyethyl)ornithine was produced only by certain strains of Group N streptococci. These findings may indicate a plasmid locus for the gene(s) encoding the enzyme(s) for N5-(1-carboxyethyl)ornithine biosynthesis.  相似文献   

19.
Aims: To demonstrate that the meat food strain Weissella halotolerans combines an ornithine decarboxylation pathway and an arginine deiminase (ADI) pathway and is able to produce putrescine, a biogenic amine. Evidence is shown that these two pathways produce a proton motive force (PMF). Methods and Results: Internal pH in W. halotolerans was measured with the sensitive probe 2′,7′–bis‐(2‐carboxyethyl)‐5(and‐6)‐carboxyfluorescein. Membrane potential was measured with the fluorescent probe 3,3′‐dipropylthiocarbocyanine iodine. Arginine and ornithine transport studies were made under several conditions, using cells loaded or not loaded with the biogenic amine putrescine. ADI pathway caused an increase in ΔpH dependent on the activity of F0F1ATPase. Ornithine decarboxylation pathway generates both a ΔpH and a ΔΨ. Both these pathways lead to the generation of a PMF. Conclusions: Weissella halotolerans W22 combines an ADI pathway and an ornithine decarboxylation pathway, conducing to the production of the biogenic amine putrescine and of a PMF. Transport studies suggest the existence of a unique antiporter arginine/putrescine in this lactic acid bacteria strain. Significance and Impact of the Study: The coexistence of two different types of amino acid catabolic pathways, leading to the formation of a PMF, is shown for a Weissella strain for the first time. Moreover, a unique antiport arginine/putrescine is hypothesized to be present in this food strain.  相似文献   

20.
Like many arginolytic streptococci,Streptococcus sanguis P4A7 is auxotrophic for arginine (Arg) and can also use this amino acid as an energy source; its dissimilation via the arginine deiminase (ADI) pathway is potentially important in dental plaque metabolism. Arg uptake was investigated in chemostat-grown cells; two systems were found: a low-affinity system (A) and a high-affinity system (B). Both systems (a) functioned as well as pH 5.5 and 8.0 as at 7.0; (b) were insensitive to proton-conducting uncouplers and metabolic inhibitors, and (c) were unaffected by prior starvation of cells or their pre-energization with glucose. Thus, Arg uptake appeared to be energy-independent. Inhibition studies with Arg structural analogues indicated that both the carboxyl and guanidino functional groups and their spatial relationship are important as recognition sites in system A, while all three functional groups appear important in system B. It is suggested that system A represents the ADI pathway, whereas system B is used to satisfy the organism's auxotrophic requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号