首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fusarium Tri4 encodes a cytochrome P450 monooxygenase (CYP) for hydroxylation at C-2 of the first committed intermediate trichodiene (TDN) in the biosynthesis of trichothecenes. To examine whether this CYP further participates in subsequent oxygenation steps leading to isotrichotriol (4), we engineered Saccharomyces cerevisiae for de novo production of the early intermediates by introducing cDNAs of Fusarium graminearum Tri5 (FgTri5 encoding TDN synthase) and Tri4 (FgTri4). From a culture of the engineered yeast grown on induction medium (final pH 2.7), we identified two intermediates, 2alpha-hydroxytrichodiene (1) and 12,13-epoxy-9,10-trichoene-2alpha-ol (2), and a small amount of non-Fusarium trichothecene 12,13-epoxytrichothec-9-ene (EPT). Other intermediates isotrichodiol (3) and 4 were identified in the transgenic yeasts grown on phosphate-buffered induction medium (final pH 5.5-6.0). When Trichothecium roseum Tri4 (TrTri4) was used in place of FgTri4, 4 was not detected in the culture. The three intermediates, 1, 2, and 3, were converted to 4,15-diacetylnivalenol (4,15-diANIV) when fed to a toxin-deficient mutant of F. graminearum with the FgTri4+ genetic background (viz., by introducing a FgTri5- mutation), but were not metabolized by an FgTri4- mutant. These results provide unambiguous evidence that FgTri4 encodes a multifunctional CYP for epoxidation at C-12,13, hydroxylation at C-11, and hydroxylation at C-3 in addition to hydroxylation at C-2.  相似文献   

3.
We previously characterized Tri1, a gene required for hydroxylation of the C-8 position during trichothecene mycotoxin biosynthesis in Fusarium sporotrichioides NRRL 3299. Sequence analysis of the region surrounding Tri1 revealed a gene, named Tri16, which could encode an acyltransferase. Unlike the wild-type parent strain NRRL 3299, which accumulates primarily T-2 toxin along with low levels of diacetoxyscirpenol (DAS) and neosolaniol (NEO) and trace amounts of 8-propionyl-neosolaniol (P-NEO) and 8-isobutyryl-neosolaniol (B-NEO), mutants containing a disruption of Tri16 were blocked in the production of the three C-8 esterified compounds T-2 toxin, P-NEO, and B-NEO and accumulated the C-8-hydroxylated compound NEO along with secondary levels of DAS. These data indicate that Tri16 encodes an acyltransferase that catalyzes the formation of ester side groups at C-8 during trichothecene biosynthesis. We also report the presence of a Tri16 ortholog in Gibberella pulicaris R-6380 that is likely linked to a presumably inactive ortholog for Tri1.  相似文献   

4.
Many Fusarium species produce one or more agriculturally important trichothecene mycotoxins, and the relative level of toxicity of these compounds is determined by the pattern of oxygenations and acetylations or esterifications on the core trichothecene structure. Previous studies with UV-induced Fusarium sporotrichioides NRRL 3299 trichothecene mutants defined the Tri1 gene and demonstrated that it was required for addition of the oxygen at the C-8 position during trichothecene biosynthesis. We have cloned and characterized the Tri1 gene from NRRL 3299 and found that it encodes a cytochrome P450 monooxygenase. The disruption of Tri1 blocks production of C-8-oxygenated trichothecenes and leads to the accumulation of 4,15-diacetoxyscirpenol, the same phenotype observed in the tri1 UV-induced mutants MB1716 and MB1370. The Tri1 disruptants and the tri1 UV-induced mutants do not complement one another when coinoculated, and the Tri1 gene sequence restores T-2 toxin production in both MB1716 and MB1370. The DNA sequence flanking Tri1 contains another new Tri gene. Thus, Tri1 encodes a C-8 hydroxylase and is located either in a new distal portion of the trichothecene gene cluster or in a second separate trichothecene gene cluster.  相似文献   

5.
6.
7.
Tri1 in Fusarium graminearum encodes a P450 oxygenase   总被引:1,自引:0,他引:1  
Gibberella zeae (asexual state Fusarium graminearum) is a major causal agent of wheat head blight and maize ear rot in North America and is responsible for contamination of grain with deoxynivalenol and related trichothecene mycotoxins. To identify additional trichothecene biosynthetic genes, cDNA libraries were prepared from fungal cultures under trichothecene-inducing conditions in culture and in planta. A gene designated LH1 that was highly expressed under these conditions exhibited only moderate (59%) similarity to known trichothecene biosynthetic cytochrome P450s. To determine the function of LH1, gene disruptants were produced and assessed for trichothecene production. Gene disruptants no longer produced 15-acetyldeoxynivalenol, which is oxygenated at carbon 7 (C-7) and C-8, but rather accumulated calonectrin and 3-deacetylcalonectrin, which are not oxygenated at either C-7 or C-8. These results indicate that gene LH1 encodes a cytochrome P450 responsible for oxygenation at one or both of these positions. Despite the relatively low level of DNA and amino acid sequence similarity between the two genes, LH1 from G. zeae is the probable homologue of Tri1, which encodes a cytochrome P450 required for C-8 oxygenation in F. sporotrichioides.  相似文献   

8.
We previously characterized Tri1, a gene required for hydroxylation of the C-8 position during trichothecene mycotoxin biosynthesis in Fusarium sporotrichioides NRRL 3299. Sequence analysis of the region surrounding Tri1 revealed a gene, named Tri16, which could encode an acyltransferase. Unlike the wild-type parent strain NRRL 3299, which accumulates primarily T-2 toxin along with low levels of diacetoxyscirpenol (DAS) and neosolaniol (NEO) and trace amounts of 8-propionyl-neosolaniol (P-NEO) and 8-isobutyryl-neosolaniol (B-NEO), mutants containing a disruption of Tri16 were blocked in the production of the three C-8 esterified compounds T-2 toxin, P-NEO, and B-NEO and accumulated the C-8-hydroxylated compound NEO along with secondary levels of DAS. These data indicate that Tri16 encodes an acyltransferase that catalyzes the formation of ester side groups at C-8 during trichothecene biosynthesis. We also report the presence of a Tri16 ortholog in Gibberella pulicaris R-6380 that is likely linked to a presumably inactive ortholog for Tri1.  相似文献   

9.
Zhou N  Tootle TL  Glazebrook J 《The Plant cell》1999,11(12):2419-2428
Phytoalexins are low molecular weight antimicrobial compounds that are synthesized in response to pathogen attack. The phytoalexin camalexin, an indole derivative, is produced by Arabidopsis in response to infection with the bacterial pathogen Pseudomonas syringae. The phytoalexin deficient 3 (pad3) mutation, which causes a defect in camalexin production, has no effect on resistance to P. syringae but compromises resistance to the fungal pathogen Alternaria brassicicola. We have now isolated PAD3 by map-based cloning. The predicted PAD3 protein appears to be a cytochrome P450 monooxygenase, similar to those from maize that catalyze synthesis of the indole-derived secondary metabolite 2,4-dihydroxy-1, 4-benzoxazin-3-one. The expression of PAD3 is tightly correlated with camalexin synthesis and is regulated by PAD4 and PAD1. On the basis of these findings, we conclude that PAD3 almost certainly encodes an enzyme required for camalexin biosynthesis. Moreover, these results strongly support the idea that camalexin does not play a major role in plant resistance to P. syringae infection, although it is involved in resistance to a fungal pathogen.  相似文献   

10.
Maltol derivatives are utilized in a variety of fields due to their metal-chelating abilities, and modification of the 2-methyl side chain is known to effectively expand their functional diversity. In the present study, microbial enzymes were screened for hydroxylating activity towards the 2-methyl group in a maltol derivative, 3-benzyloxy-2-methyl-4-pyrone (BMAL). Novosphingobium sp. SB32149 was found to have the ability to convert BMAL into 3-benzyloxy-2-hydroxymethyl-4-pyrone (BMAL-OH). The enzymes responsible, a cytochrome P450 monooxygenase (P450nov), a ferredoxin (FDXnov), and a ferredoxin reductase (FDRnov), were identified in the SB32149 strain. In the reaction with recombinant Escherichia coli expressing P450nov, FDXnov, and FDRnov, BMAL-OH was successfully produced from BMAL. Moreover, using the directed evolution approach, four amino acid substitutions, L188P/F218L/L237M in P450nov and A10T in FDXnov, were found to enhance BMAL-OH production. Consequently, up to 5.2 g/L BMAL-OH was obtained from 8.0 g/L BMAL by bioconversion using a 250-mL jar fermenter, indicating that this strain may be useful for synthesis of maltol derivatives which could have potential applications in various fields.  相似文献   

11.
The nysL gene, encoding a putative P450 monooxygenase, was identified in the nystatin biosynthetic gene cluster of Streptomyces noursei. Although it has been proposed that NysL is responsible for hydroxylation of the nystatin precursor, experimental evidence for this activity was lacking. The nysL gene was inactivated in S. noursei by gene replacement, and the resulting mutant was shown to produce 10-deoxynystatin. Purification and an in vitro activity assay for 10-deoxynystatin demonstrated its antifungal activity being equal to that of nystatin. The NysL protein was expressed heterologously in Escherichia coli as a His-tagged protein and used in an enzyme assay with 10-deoxynystatin as a substrate. The results obtained clearly demonstrated that NysL is a hydroxylase responsible for the post-polyketide synthase modification of 10-deoxynystatin at position C-10. Kinetic studies with the purified recombinant enzyme allowed determination of K(m) and k(cat) and revealed no inhibition of recombinant NysL by either the substrate or the product. These studies open the possibility for in vitro evolution of NysL aimed at changing its specificity, thereby providing new opportunities for engineered biosynthesis of novel nystatin analogues hydroxylated at alternative positions of the macrolactone ring.  相似文献   

12.
The insecticidal loline alkaloids, produced by Neotyphodium uncinatum and related endophytes, are exo-1-aminopyrrolizidines with an ether bridge between C-2 and C-7. Loline alkaloids vary in methyl, acetyl, and formyl substituents on the 1-amine, which affect their biological activity. Enzymes for key loline biosynthesis steps are probably encoded by genes in the LOL cluster, which is duplicated in N. uncinatum, except for a large deletion in lolP2. The role of lolP1 was investigated by its replacement with a hygromycin B phosphotransferase gene. Compared to wild type N. uncinatum and an ectopic transformant, DeltalolP1 cultures had greatly elevated levels of N-methylloline (NML) and lacked N-formylloline (NFL). Complementation of DeltalolP1 with lolP1 under control of the Emericella nidulans trpC promoter restored NFL production. These results and the inferred sequence of LolP1 indicate that it is a cytochrome P450, catalyzing oxygenation of an N-methyl group in NML to the N-formyl group in NFL.  相似文献   

13.
Ancymidol, a plant growth regulator, inhibited biosynthesis of diacetoxyscirpenol by Gibberella pulicaris (Fusarium sambucinum) in a defined liquid medium. Ancymidol also inhibited biosynthesis of T-2 toxin by a wild-type strain of Fusarium sporotrichioides and biosynthesis of diacetoxyscirpenol, deacetylated calonectrin, and dideacetylated calonectrin by mutant strains of this species. Ancymidol-treated cultures accumulated the hydrocarbon trichodiene, a biosynthetic precursor of the trichothecenes. Ancymidol did not block trichodiene accumulation by a trichodiene-producing mutant strain of F. sporotrichioides. Ancymidol appears to block the trichothecene biosynthetic pathway after formation of trichodiene and before formation of trichothecenes containing four or more oxygen atoms.  相似文献   

14.
15.
Ancymidol, a plant growth regulator, inhibited biosynthesis of diacetoxyscirpenol by Gibberella pulicaris (Fusarium sambucinum) in a defined liquid medium. Ancymidol also inhibited biosynthesis of T-2 toxin by a wild-type strain of Fusarium sporotrichioides and biosynthesis of diacetoxyscirpenol, deacetylated calonectrin, and dideacetylated calonectrin by mutant strains of this species. Ancymidol-treated cultures accumulated the hydrocarbon trichodiene, a biosynthetic precursor of the trichothecenes. Ancymidol did not block trichodiene accumulation by a trichodiene-producing mutant strain of F. sporotrichioides. Ancymidol appears to block the trichothecene biosynthetic pathway after formation of trichodiene and before formation of trichothecenes containing four or more oxygen atoms.  相似文献   

16.
Gibberella fujikuroi is a species complex with at least nine different biological species, termed mating populations (MPs) A to I (MP-A to MP-I), known to produce many different secondary metabolites. So far, gibberellin (GA) production is restricted to Fusarium fujikuroi (G. fujikuroi MP-C), although at least five other MPs contain all biosynthetic genes. Here, we analyze the GA gene cluster and GA pathway in the closest related species, Fusarium proliferatum (MP-D), and demonstrate that the GA genes share a high degree of sequence homology with the corresponding genes of MP-C. The GA production capacity was restored after integration of the entire GA gene cluster from MP-C, indicating the existence of an active regulation system in F. proliferatum. The results further indicate that one reason for the loss of GA production is the accumulation of several mutations in the coding and 5' noncoding regions of the ent-kaurene oxidase gene, P450-4.  相似文献   

17.
18.
The biosynthesis of the thaxtomin cyclic dipeptide phytotoxins proceeds nonribosomally via the thiotemplate mechanism. Acyladenylation, thioesterification, N-methylation, and cyclization of two amino acid substrates are catalyzed by the txtAB-encoded thaxtomin synthetase. Nucleotide sequence analysis of the region 3' of txtAB in Streptomyces acidiscabies 84.104 identified an open reading frame (ORF) encoding a homolog of the P450 monooxygenase gene family. It was proposed that thaxtomin A phenylalanyl hydroxylation was catalyzed by the monooxygenase homolog. The ORF was mutated in S. acidiscabies 84.104 by using an integrative gene disruption construct, and culture filtrate extracts of the mutant were assayed for the presence of dehydroxy derivatives of thaxtomin A. Reversed-phase high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry indicated that the major component in culture filtrate extracts of the mutant was less polar and smaller than thaxtomin A. Comparisons of electrospray mass spectra as well as (1)H- and (13)C-nuclear magnetic resonance spectra of the purified compound with those previously reported for thaxtomins confirmed the structure of the compound as 12,15-N-dimethylcyclo-(L-4-nitrotryptophyl-L-phenylalanyl), the didehydroxy analog of thaxtomin A. The ORF, designated txtC, was cloned and the recombinant six-His-tagged fusion protein produced in Escherichia coli and purified from cell extracts. TxtC produced in E. coli exhibited spectral properties similar to those of cytochrome P450-type hemoproteins that have undergone conversion to the catalytically inactive P420 form. Based on these properties and the high similarity of TxtC to other well-characterized P450 enzymes, we conclude that txtC encodes a cytochrome P450-type monooxygenase required for postcyclization hydroxylation of the cyclic dipeptide.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号