首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5' extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor.  相似文献   

2.
The assembly of ribosomes involves the coordinated processing and modification of rRNAs with the temporal association of ribosomal proteins. This process is regulated by assembly factors such as helicases, modifying enzymes, and GTPases. In contrast to the assembly of cytoplasmic ribosomes, there is a paucity of information concerning the role of assembly proteins in the biogenesis of mitochondrial ribosomes. In this study, we demonstrate that the Saccharomyces cerevisiae GTPase Mtg2p (Yhr168wp) is essential for mitochondrial ribosome function. Cells lacking MTG2 lose their mitochondrial DNA, giving rise to petite cells. In addition, cells expressing a temperature-sensitive mgt2-1 allele are defective in mitochondrial protein synthesis and contain lowered levels of mitochondrial ribosomal subunits. Significantly, elevated levels of Mtg2p partially suppress the thermosensitive loss of mitochondrial DNA in a 21S rRNA methyltransferase mutant, mrm2. We propose that Mtg2p is involved in mitochondrial ribosome biogenesis. Consistent with this role, we show that Mtg2p is peripherally localized to the mitochondrial inner membrane and associates with the 54S large ribosomal subunit in a salt-dependent manner.  相似文献   

3.
The bacterial homologues of ObgH1 and Mtg1, ObgE and RbgA, respectively, have been suggested to be involved in the assembly of large ribosomal subunits. We sought to elucidate the functions of ObgH1 and Mtg1 in ribosome biogenesis in human mitochondria. ObgH1 and Mtg1 are localized in mitochondria in association with the inner membrane, and are exposed on the matrix side. Mtg1 and ObgH1 specifically associate with the large subunit of the mitochondrial ribosome in GTP-dependent manner. The large ribosomal subunit stimulated the GTPase activity of Mtg1, whereas only the intrinsic GTPase activity was detectable with ObgH1. The knockdown of Mtg1 decreased the overall mitochondrial translation activity, and caused defects in the formation of respiratory complexes. On the other hand, the depletion of ObgH1 led to the specific activation of the translation of subunits of Complex V, and disrupted its proper formation. Our results suggested that Mtg1 and ObgH1 function with the large subunit of the mitochondrial ribosome, and are also involved in both the translation and assembly of respiratory complexes. The fine coordination of ribosome assembly, translation and respiratory complex formation in mammalian mitochondria is affirmed.  相似文献   

4.
The involvement of mitochondrial protein synthesis in the assembly of the mitochondrial ribosomes was investigated by studying the extent to which the assembly process can proceed in petite mutants of Saccharomyces cerevisiae which lack mitochondrial protein synthetic activity due to the deletion of some tRNA genes and/or one of the rRNA genes on the mtDNA. Petite strains which retain the 15-S rRNA gene can synthesize this rRNA species, but do not contain any detectable amounts of the small mitochondrial ribosomal subunit. Instead, a ribonucleoparticle with a sedimentation coefficient of 30 S (instead of 37 S) was observed. This ribonucleoparticle contained all the small ribosomal subunit proteins with the exception of the var1 and three to five other proteins, which indicates that the 30-S ribonucleoparticle is related to the small mitochondrial ribosomal subunit (37 S). Reconstitution experiments using the 30-S particle and the large mitochondrial ribosomal subunit from a wild-type yeast strain indicate that the 30-S particle is not active in translating the artificial message poly(U). The large mitochondrial ribosomal subunit was present in petite strains retaining the 21-S rRNA gene. The petite 54-S subunit is biologically active in the translation of poly(U) when reconstituted with the small subunit (37 S) from a wild-type strain. The above results indicate that mitochondrial protein synthetic activity is essential for the assembly of the mature small ribosomal subunit, but not for the large subunit. Since the var1 protein is the only mitochondrial translation product known to date to be associated with the mitochondrial ribosomes, the results suggest that this protein is essential for the assembly of the mature small subunit.  相似文献   

5.
6.
Temperature-sensitive mutants defective in 60S ribosomal subunit protein L16 of Saccharomyces cerevisiae were isolated through hydroxylamine mutagenesis of the RPL16B gene and plasmid shuffling. Two heat-sensitive and two cold-sensitive isolates were characterized. The growth of the four mutants is inhibited at their restrictive temperatures. However, many of the cells remain viable if returned to their permissive temperatures. All of the mutants are deficient in 60S ribosomal subunits and therefore accumulate translational preinitiation complexes. Three of the mutants exhibit a shortage of mature 25S rRNA, and one accumulates rRNA precursors. The accumulation of rRNA precursors suggests that ribosome assembly may be slowed in this mutant. These phenotypes lead us to propose that mutants containing the rpl16b alleles are defective for 60S subunit assembly rather than function. In the mutant carrying the rpl16b-1 allele, ribosomes initiate translation at the noncanonical codon AUA, at least on the rpl16b-1 mRNA, bringing to light a possible connection between the rate and the fidelity of translation initiation.  相似文献   

7.
L. S. Folley  T. D. Fox 《Genetics》1994,137(2):369-379
A yeast mitochondrial translation initiation codon mutation affecting the gene for cytochrome oxidase subunit III (COX3) was partially suppressed by a spontaneous nuclear mutation. The suppressor mutation also caused cold-sensitive fermentative growth on glucose medium. Suppression and cold sensitivity resulted from inactivation of the gene product of RPS18A, one of two unlinked genes that code the essential cytoplasmic small subunit ribosomal protein termed S18 in yeast. The two S18 genes differ only by 21 silent substitutions in their exons; both are interrupted by a single intron after the 15th codon. Yeast S18 is homologous to the human S11 (70% identical) and the Escherichia coli S17 (35% identical) ribosomal proteins. This highly conserved family of ribosomal proteins has been implicated in maintenance of translational accuracy and is essential for assembly of the small ribosomal subunit. Characterization of the original rps18a-1 missense mutant and rps18aΔ and rps18bΔ null mutants revealed that levels of suppression, cold sensitivity and paromomycin sensitivity all varied directly with a limitation of small ribosomal subunits. The rps18a-1 mutant was most affected, followed by rps18aΔ then rps18bΔ. Mitochondrial mutations that decreased COX3 expression without altering the initiation codon were not suppressed. This allele specificity implicates mitochondrial translation in the mechanism of suppression. We could not detect an epitope-tagged variant of S18 in mitochondria. Thus, it appears that suppression of the mitochondrial translation initiation defect is caused indirectly by reduced levels of cytoplasmic small ribosomal subunits, leading to changes in either cytoplasmic translational accuracy or the relative levels of cytoplasmic translation products.  相似文献   

8.
In eukaryotes, nuclear export of the large (60S) ribosomal subunit requires the adapter protein Nmd3p to provide the nuclear export signal. Here, we show that in yeast release of Nmd3p from 60S subunits in the cytoplasm requires the ribosomal protein Rpl10p and the G-protein, Lsg1p. Mutations in LSG1 or RPL10 blocked Nmd3-GFP shuttling into the nucleus and export of pre-60S subunits from the nucleus. Overexpression of NMD3 alleviated the export defect, indicating that the block in 60S export in lsg1 and rpl10 mutants results indirectly from failing to recycle Nmd3p. The defect in Nmd3p recycling and the block in 60S export in both lsg1 and rpl10 mutants was also suppressed by mutant Nmd3 proteins that showed reduced binding to 60S subunits in vitro. We propose that the correct loading of Rpl10p into 60S subunits is required for the release of Nmd3p from subunits by Lsg1p. These results suggest a coupling between recycling the 60S export adapter and activation of 60S subunits for translation.  相似文献   

9.
10.
11.
Summary Due to the absence of repetition of the rRNA genes in S. cerevisiae mitochondria, isolation of ribosomal mutants at the level of the rRNA genes is relatively easy in this system. We describe here a novel thermosensitive mutation, ts1297, localized by rho- deletion mapping in (or very close to) the sequence corresponding to the small ribosomal RNA (15S) gene. Defective mutations of the small rRNA have not been reported so far.In the mutant, the amount of 15S rRNA and of the small ribosomal subunit, 37S, is reduced. The quantity of the large ribosomal RNA (21S), directly extracted from mitochondria, appears normal. However, the large ribosomal subunit, 50S, seems to be fragile and could be recovered only in the presence of Ca2+ in place of Mg2+. The 50S particles seem to be completely degraded under normal conditions of extraction with Mg2+.The thermosensitive phenotype of the ts1297 mutant is suppressed by a nuclear mutation SU101. The SU101 mutation had been originally isolated as a suppressor of another mitochondrial mutation, ts902, which is located within the 21S rRNA gene.These results suggest that the mitochondrial mutations ts1297 and ts902 are both involved in the interaction of the large and small ribosomal subunits.  相似文献   

12.
Genetic selection has been used to isolate second-site suppressors of a defective cold-sensitive initiation factor I (IF1) R69L mutant of Escherichia coli. The suppressor mutants specifically map to a single rRNA operon on a plasmid in a strain with all chromosomal rRNA operons deleted. Here, we describe a set of suppressor mutations that are located in the processing stem of precursor 23S rRNA. These mutations interfere with processing of the 23S rRNA termini. A lesion of RNase III also suppresses the cold sensitivity. Our results suggest that the mutant IF1 strain is perturbed at the level of ribosomal subunit association, and the suppressor mutations partially compensate for this defect by disrupting rRNA maturation. These results support the notion that IF1 is an RNA chaperone and that translation initiation is coupled to ribosomal maturation.  相似文献   

13.
QSR1 is a recently discovered, essential Saccharomyces cerevisiae gene, which encodes a 60S ribosomal subunit protein. Thirty-one unique temperature-sensitive alleles of QSR1 were generated by regional codon randomization within a conserved 20-amino-acid sequence of the QSR1-encoded protein. The temperature-sensitive mutants arrest as viable, large, unbudded cells 24 to 48 h after a shift to 37 degrees C. Polysome and ribosomal subunit analysis by velocity gradient centrifugation of lysates from temperature-sensitive qsr1 mutants and from cells in which Qsr1p was depleted by down regulation of an inducible promoter revealed the presence of half-mer polysomes and a large pool of free 60S subunits that lack Qsr1p. In vitro subunit-joining assays and analysis of a mutant conditional for the synthesis of Qsr1p demonstrate that 60S subunits devoid of Qsr1p are unable to join with 40S subunits whereas 60S subunits that contain either wild-type or mutant forms of the protein are capable of subunit joining. The defective 60S subunits result from a reduced association of mutant Qsr1p with 60S subunits. These results indicate that Qsr1p is required for ribosomal subunit joining.  相似文献   

14.
Williams EH  Butler CA  Bonnefoy N  Fox TD 《Genetics》2007,175(3):1117-1126
Rsm28p is a dispensable component of the mitochondrial ribosomal small subunit in Saccharomyces cerevisiae that is not related to known proteins found in bacteria. It was identified as a dominant suppressor of certain mitochondrial mutations that reduced translation of the COX2 mRNA. To explore further the function of Rsm28p, we isolated mutations in other genes that caused a synthetic respiratory defective phenotype together with rsm28Delta. These mutations identified three nuclear genes: IFM1, which encodes the mitochondrial translation initiation factor 2 (IF2); FMT1, which encodes the methionyl-tRNA-formyltransferase; and RMD9, a gene of unknown function. The observed genetic interactions strongly suggest that the ribosomal protein Rsm28p and Ifm1p (IF2) have similar and partially overlapping functions in yeast mitochondrial translation initiation. Rmd9p, bearing a TAP-tag, was localized to mitochondria and exhibited roughly equal distribution in soluble and membrane-bound fractions. A small fraction of the Rmd9-TAP sedimented together with presumed monosomes, but not with either individual ribosomal subunit. Thus, Rmd9 is not a ribosomal protein, but may be a novel factor associated with initiating monosomes. The poorly respiring rsm28Delta, rmd9-V363I double mutant did not have a strong translation-defective phenotype, suggesting that Rmd9p may function upstream of translation initiation, perhaps at the level of localization of mitochondrially coded mRNAs.  相似文献   

15.
H J Pel  C Maat  M Rep    L A Grivell 《Nucleic acids research》1992,20(23):6339-6346
We report the molecular cloning, sequencing and genetic characterization of the first gene encoding an organellar polypeptide chain release factor, the MRF1 gene of the yeast Saccharomyces cerevisiae. The MRF1 gene was cloned by genetic complementation of a respiratory deficient mutant disturbed in the expression of the mitochondrial genes encoding cytochrome c oxidase subunit 1 and 2, COX1 and COX2. For COX1 this defect has been attributed to an impaired processing of several introns. Sequence analysis of the MRF1 gene revealed that it encodes a protein highly similar to prokaryotic peptide chain release factors, especially RF-1. Disruption of the gene results in a high instability of the mitochondrial genome, a hallmark for a strict lesion in mitochondrial protein synthesis. The respiratory negative phenotype of mrf1 mutants lacking all known mitochondrial introns and the reduced synthesis of mitochondrial translation products encoded by unsplit genes confirm a primary defect in mitochondrial protein synthesis. Over-expression of the MRF1 gene in a mitochondrial nonsense suppressor strain reduces suppression in a dosage-dependent manner, shedding new light on the role of the '530 region' of 16S-like ribosomal RNA in translational fidelity.  相似文献   

16.
Rrs1p is a ribosomal protein L11-binding protein in Saccharomyces cerevisiae. We have obtained temperature-sensitive rrs1 mutants by random PCR mutagenesis. [(3)H]Methionine pulse-chase analysis reveals that the rrs1 mutations cause a defect in maturation of 25S rRNA. Ribosomal protein L25-enhanced green fluorescent protein, a reporter of the 60S ribosomal subunit, concentrates in the nucleus with enrichment in the nucleolus when the rrs1 mutants are shifted to the restrictive temperature. These results suggest that Rrs1p stays on the pre-60S particle from the early stage to very late stage of the large-subunit maturation and is required for export of 60S subunits from the nucleolus to the cytoplasm.  相似文献   

17.
The sarcin–ricin loop (SRL) of 23S rRNA in the large ribosomal subunit is a factor-binding site that is essential for GTP-catalyzed steps in translation, but its precise functional role is thus far unknown. Here, we replaced the 15-nucleotide SRL with a GAAA tetraloop and affinity purified the mutant 50S subunits for functional and structural analysis in vitro. The SRL deletion caused defects in elongation-factor-dependent steps of translation and, unexpectedly, loss of EF-Tu-independent A-site tRNA binding. Detailed chemical probing analysis showed disruption of a network of rRNA tertiary interactions that hold together the 23S rRNA elements of the functional core of the 50S subunit, accompanied by loss of ribosomal protein L16. Our results reveal an influence of the SRL on the higher-order structure of the 50S subunit, with implications for its role in translation.  相似文献   

18.
Summary A cytoplasmic mutant of Saccharomyces cerevisiae (E23-1) has been isolated that is resistant to erythromycin and cold sensitive for growth on nonfermentable carbon sources at 18°. Genetic analysis has shown that both of these properties probably result from a single mutation at the rib2 locus which maps close to or within the gene for the 21S rRNA of the mitochondrial 50S ribosomal subunit. Electrophoresis of total RNA extracted from purified mitochondria demonstrated that the 21S and 14S rRNA species from both mutant and wild-type cells were present in roughly equimolar quantities regardless of growth temperature. The mutant is therefore not defective in the synthesis of the 21S rRNA. Sucrose gradient analysis of the mitochondrial ribosomes in Mg2+-containing buffers revealed that approximate values for the ratio of 50S to 37S subunits were 1:1 for wild-type cells grown at either 18° or 32°, 0.5:1 for the mutant grown at 32° and 0.2:1 for the mutant grown at 18°. The subunit ratios were approximately 1:1 when Ca2+-containing buffers were used, however, In alls cases, 50S particles from the mutant grown at 18° lacked or contained markedly reduced amounts of two distinctive protein components that were present in the mutant at 32° and in the wild-type at both temperatures. In addition, no intact 21S RNA could be recovered from the mitochondrial ribosomes of the mutant grown at the restrictive temperature, even in the presence of Ca2+. These findings indicate that mitochondrial 50S ribosomal subunits produced by the mutant at 18° are structurally defective and raise the possibility that the defect results from an alteration in the gene for 21S rRNA.A preliminary report of this work was presented at the meeting on The Molecular Biology of Yeast, Cold Spring Harbor Laboratory, August 18–22, 1977  相似文献   

19.
Yeast ribosomal protein L11 is positioned at the intersubunit cleft of the large subunit central protuberance, forming an intersubunit bridge with the small subunit protein S18. Mutants were engineered in the central core region of L11 which interacts with Helix 84 of the 25S rRNA. Numerous mutants in this region conferred 60S subunit biogenesis defects. Specifically, many mutations of F96 and the A66D mutant promoted formation of halfmers as assayed by sucrose density ultracentrifugation. Halfmer formation was not due to deficiency in 60S subunit production, suggesting that the mutants affected subunit-joining. Chemical modification analyses indicated that the A66D mutant, but not the F96 mutants, promoted changes in 25S rRNA structure, suggesting at least two modalities for subunit joining defects. 25S rRNA structural changes were located both adjacent to A66D (in H84), and more distant (in H96-7). While none of the mutants significantly affected ribosome/tRNA binding constants, they did have strong effects on cellular growth at both high and low temperatures, in the presence of translational inhibitors, and promoted changes in translational fidelity. Two distinct mechanisms are proposed by which L11 mutants may affect subunit joining, and identification of the amino acids associated with each of these processes are presented. These findings may have implications for our understanding of multifaceted diseases such as Diamond–Blackfan anemia which have been linked in part with mutations in L11.  相似文献   

20.
Histidine protein methylation is an unusual posttranslational modification. In the yeast Saccharomyces cerevisiae, the large ribosomal subunit protein Rpl3p is methylated at histidine 243, a residue that contacts the 25S rRNA near the P site. Rpl3p methylation is dependent upon the presence of Hpm1p, a candidate seven-beta-strand methyltransferase. In this study, we elucidated the biological activities of Hpm1p in vitro and in vivo. Amino acid analyses reveal that Hpm1p is responsible for all of the detectable protein histidine methylation in yeast. The modification is found on a polypeptide corresponding to the size of Rpl3p in ribosomes and in a nucleus-containing organelle fraction but was not detected in proteins of the ribosome-free cytosol fraction. In vitro assays demonstrate that Hpm1p has methyltransferase activity on ribosome-associated but not free Rpl3p, suggesting that its activity depends on interactions with ribosomal components. hpm1 null cells are defective in early rRNA processing, resulting in a deficiency of 60S subunits and translation initiation defects that are exacerbated in minimal medium. Cells lacking Hpm1p are resistant to cycloheximide and verrucarin A and have decreased translational fidelity. We propose that Hpm1p plays a role in the orchestration of the early assembly of the large ribosomal subunit and in faithful protein production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号