首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vacuolar (H+)-ATPases (V-ATPases) are ubiquitous, ATP-driven proton pumps that acidify organelles or the extracellular space. A rapid and effective mechanism for regulating V-ATPase activity involves reversible dissociation of the two functional domains of the pump, V1 and V0. This process is best characterized in yeast, where V-ATPases are reversibly disassembled in response to glucose depletion. To identify regulators that control this process in vivo, a genetic screen was performed in yeast to search for mutants that cannot disassemble their V-ATPases when grown in the absence of glucose. This screen identified IRA1 (inhibitory regulator of the Ras/cAMP pathway 1) and IRA2 as essential genes for regulating V-ATPase dissociation in vivo. IRA1 and IRA2 encode GTPase-activating proteins that negatively regulate Ras in nutrient-poor conditions. Down-regulation of Ras lowers cAMP levels by reducing adenylate cyclase activity. Decreased cAMP levels in turn lead to reduced activity of protein kinase A (PKA). Our results show that targeted deletion of IRA2 results in defective disassembly of the V-ATPase in response to glucose depletion, and reexpression of the gene rescues this phenotype. Glucose-dependent dissociation is also blocked in strains expressing the dominant active RAS2val19 allele or in strains deficient for the regulatory subunit of PKA, both of which lead to constitutively active PKA. These results reveal a role for PKA in controlling glucose-dependent V-ATPase assembly in yeast.  相似文献   

2.
One mechanism of regulating V-ATPase activity in vivo involves reversible dissociation into its component V(1) and V(0) domains, which in yeast occurs in response to glucose depletion. V-ATPase complexes containing the Vph1p isoform of subunit a (VCC) are targeted to the vacuole, and Stv1p-containing complexes (SCC) are targeted to the Golgi. Overexpression of Stv1p results in mistargeting of SCC to the vacuole. We have investigated the role of the a subunit isoform and cellular environment in controlling dissociation using vacuolar protein sorting (vps) mutants that accumulate proteins in either the prevacuolar compartment (PVC) (vps27Delta) or a post-Golgi compartment (PGC) (vps21Delta). Dissociation of both VCC and SCC depends upon cellular environment, with dissociation most complete in the vacuole and least complete in the PVC. The dependence of dissociation on V-ATPase activity was also investigated using both concanamycin and inactivating mutations. Concanamycin partly blocks dissociation of both VCC and SCC in all three compartments, with inhibition generally greater for SCC than VCC. The R735Q mutant of Vph1p results in loss of both ATPase and proton transport, whereas the R735K mutant lacks proton transport but has 10% of wild type ATPase activity. For VCC in the vacuole, dissociation is completely blocked for the R735Q but not the R735K mutant. Significant dissociation of VCC is observed for both mutants in the PVC and PGC, indicating that V-ATPase activity is not absolutely required for dissociation. Similar results were obtained for SCC, although dissociation of SCC is again generally more sensitive to activity than VCC. These results suggest that the cellular environment is important both in controlling in vivo dissociation of the V-ATPase and the dependence of this process on catalytic activity. Moreover, catalytic activity is not absolutely required for V-ATPase dissociation.  相似文献   

3.
The catalytic nucleotide binding subunit (subunit A) of the vacuolar proton-translocating ATPase (or V-ATPase) is homologous to the beta-subunit of the F-ATPase but contains a 90-amino acid insert not present in the beta-subunit, termed the nonhomologous region. We previously demonstrated that mutations in this region lead to changes in coupling of proton transport and ATPase activity and to inhibition of in vivo dissociation of the V-ATPase complex, an important regulatory mechanism (Shao, E., Nishi T., Kawasaki-Nishi, S., and Forgac, M. (2003) J. Biol. Chem. 278, 12985-12991). Measurement of the ATP dependence of coupling for the wild type and mutant proteins demonstrates that the coupling differences are observed at ATP concentrations up to 1 mm. A decrease in coupling efficiency is observed at higher ATP concentrations for the wild type and mutant V-ATPases. Immunoprecipitation of an epitope-tagged nonhomologous region from cell lysates indicates that this region is able to bind to the integral V0 domain in the absence of the remainder of the A subunit, an interaction confirmed by immunoprecipitation of V0. Interaction between the nonhomologous region and V0 is reduced upon incubation of cells in the absence of glucose, suggesting that the nonhomologous region may act as a trigger to activate in vivo dissociation. Immunoprecipitation suggests that the epitope tag on the nonhomologous region becomes less accessible upon glucose withdrawal, possibly due to binding to another cellular target. In vivo dissociation of the V-ATPase in response to glucose removal is also blocked by chloroquine, a weak base that neutralizes the acidic pH of the vacuole. The results suggest that the dependence of in vivo dissociation of the V-ATPase on catalytic activity may be due to neutralization of the yeast vacuole, which in turn blocks glucose-dependent dissociation.  相似文献   

4.
The 100 kDa a-subunit of the yeast vacuolar (H(+))-ATPase (V-ATPase) is encoded by two genes, VPH1 and STV1. These genes encode unique isoforms of the a-subunit that have previously been shown to reside in different intracellular compartments in yeast. Vph1p localizes to the central vacuole, whereas Stv1p is present in some other compartment, possibly the Golgi or endosomes. To compare the properties of V-ATPases containing Vph1p or Stv1p, Stv1p was expressed at higher than normal levels in a strain disrupted in both genes, under which conditions V-ATPase complexes containing Stv1p appear in the vacuole. Complexes containing Stv1p showed lower assembly with the peripheral V(1) domain than did complexes containing Vph1p. When corrected for this lower degree of assembly, however, V-ATPase complexes containing Vph1p and Stv1p had similar kinetic properties. Both exhibited a K(m) for ATP of about 250 microm, and both showed resistance to sodium azide and vanadate and sensitivity to nanomolar concentrations of concanamycin A. Stv1p-containing complexes, however, showed a 4-5-fold lower ratio of proton transport to ATP hydrolysis than Vph1p-containing complexes. We also compared the ability of V-ATPase complexes containing Vph1p or Stv1p to undergo in vivo dissociation in response to glucose depletion. Vph1p-containing complexes present in the vacuole showed dissociation in response to glucose depletion, whereas Stv1p-containing complexes present in their normal intracellular location (Golgi/endosomes) did not. Upon overexpression of Stv1p, Stv1p-containing complexes present in the vacuole showed glucose-dependent dissociation. Blocking delivery of Vph1p-containing complexes to the vacuole in vps21Delta and vps27Delta strains caused partial inhibition of glucose-dependent dissociation. These results suggest that dissociation of the V-ATPase complex in vivo is controlled both by the cellular environment and by the 100-kDa a-subunit isoform present in the complex.  相似文献   

5.
Subunit A is the catalytic nucleotide binding subunit of the vacuolar proton-translocating ATPase (or V-ATPase) and is homologous to subunit beta of the F(1)F(0) ATP synthase (or F-ATPase). Amino acid sequence alignment of these subunits reveals a 90-amino acid insert in subunit A (termed the non-homologous region) that is absent from subunit beta. To investigate the functional role of this region, site-directed mutagenesis has been performed on the VMA1 gene that encodes subunit A in yeast. Substitutions were performed on 13 amino acid residues within this region that are conserved in all available A subunit sequences. Most of the 18 mutations introduced showed normal assembly of the V-ATPase. Of these, one (R219K) greatly reduced both proton transport and ATPase activity. By contrast, the P217V mutant showed significantly reduced ATPase activity but higher than normal levels of proton transport, suggesting an increase in coupling efficiency. Two other mutations in the same region (P223V and P233V) showed decreased coupling efficiency, suggesting that changes in the non-homologous region can alter coupling of proton transport and ATP hydrolysis. It was previously shown that the V-ATPase must possess at least 5-10% activity relative to wild type to undergo in vivo dissociation in response to glucose withdrawal. However, four of the mutations studied (G150A, D157E, P177V, and P223V) were partially or completely blocked in dissociation despite having greater than 30% of wild type levels of activity. These results suggest that changes in the non-homologous region can also alter in vivo dissociation of the V-ATPase independent of effects on activity.  相似文献   

6.
In mammalian cells, the separation of centrosomes is a prerequisite for bipolar mitotic spindle assembly. We have investigated the respective contribution of the two cytoskeleton components, microtubules and actin filaments, in this process. Distances between centrosomes have been measured during cell cycle progression in Xenopus laevis XL2 cultured cells in the presence or absence of either network. We considered two stages in centrosome separation: the splitting stage, when centrosomes start to move apart (minimum distance of 1 microm), and the elongation stage (from 1 to 7 microm). In interphase, depolymerisation of microtubules by nocodazole significantly inhibited the splitting stage, while the elongation stage was, on the contrary, facilitated. In mitosis, while nocodazole treatment completely blocked spindle assembly, in prophase, we observed that 55% of the centrosomes separated, versus 94% in the control. Upon actin depolymerisation by latrunculin, splitting of the interphase centrosome was blocked, and cells entered mitosis with unseparated centrosomes. Cells compensated for this separation delay by increasing the length of both prophase and prometaphase stages to allow for centrosome separation until a minimal distance was reached. Then the cells passed through anaphase, performing proper chromosome separation, but cytokinesis did not occur, and binuclear cells were formed. Our results clearly show that the actin microfilaments participate in centrosome separation at the G2/M transition and work in synergy with the microtubules to accelerate centrosome separation during mitosis.  相似文献   

7.
Eukaryotic cells may halt cell cycle progression following exposure to certain exogenous agents that damage cellular structures such as DNA or microtubules. This phenomenon has been attributed to functions of cellular control mechanisms termed checkpoints. Studies with the fission yeast Schizosaccharomyces pombe and mammalian cells have led to the conclusion that cell cycle arrest in response to inhibition of DNA replication or DNA damage is a result of down-regulation of the cyclin-dependent kinases (CDKs). Based on these studies, it has been proposed that inhibition of the CDK activity may constitute a general mechanism for checkpoint controls. Observations made with the budding yeast Saccharomyces cerevisiae, however, appear to disagree with this model. It has been shown that high levels of mitotic CDK activity are present in the budding yeast cells arrested in G2/mitosis as the result of DNA damage or replication inhibition. In this report, we show that a novel mutant allele of the CDC28 gene, encoding the budding yeast CDK, allowed cell cycle passage through mitosis and nuclear division in the presence of DNA damage and the microtubule toxin nocodazole at a restrictive temperature. Unlike the checkpoint-defective mutations in CDKs of fission yeast and mammalian cells, the cdc28 mutation that we identified was recessive and resulted in a loss of the CDK activity, including the Clb2-, Clb5-, and Clb6-associated, but not the Clb3-associated, CDK activities. Examination of several known alleles of cdc28 revealed that they were also, albeit partially, defective in cell cycle arrest in response to UV-generated DNA damage. These findings suggest that Cdc28 kinase in budding yeast may be required for cell cycle arrest resulting from DNA damage and disassembly of mitotic spindles.  相似文献   

8.
Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 microm nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 microm nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 microm) significantly inhibited basal and insulin-stimulated glucose uptake in adipocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 microm nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 microm nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 degrees C. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.  相似文献   

9.
Inhibition of mitosis by antimitotic drugs is thought to occur by destruction of microtubules, causing cells to arrest through the action of one or more mitotic checkpoints. We have patterned experiments in the yeast Saccharomyces cerevisiae after recent studies in mammalian cells that demonstrate the effectiveness of antimitotic drugs at concentrations that maintain spindle structure. We show that low concentrations of nocodazole delay cell division under the control of the previously identified mitotic checkpoint genes BUB1, BUB3, MAD1, and MAD2 and independently of BUB2. The same genes mediate the cell cycle delay induced in ctf13 mutants, limited for an essential kinetochore component. Our data suggest that a low concentration of nocodazole induces a cell cycle delay through checkpoint control that is sensitive to impaired kinetochore function. The BUB2 gene may be part of a separate checkpoint that responds to abnormal spindle structure.  相似文献   

10.
The organization and roles of F-actin and microtubules in the maintenance and initiation of hyphal tip growth have been analyzed in Saprolegnia ferax and Neurospora crassa. In hyphae of both species, the apex is depleted of microtubules relative to subapical regions and near-normal morphogenesis occurs in concentrations of nocodazole or MBC which remove microtubules, slow growth, and disrupt nuclear positioning. In contrast, each species contains characteristic tip-high arrays of plasma membrane-adjacent F-actin, whose organization is largely unaltered by the loss of microtubules but disruption of which by latrunculin B disrupts tip morphology. Hyphal initiation and subsequent normal morphogenesis from protoplasts of both species and spores of S. ferax are independent of microtubules, but at least in S. ferax obligatorily involve the formation of F-actin caps adjacent to the hyphal tip plasma membrane. These observations indicate an obligatory role for F-actin in hyphal polarization and tip morphogenesis and only an indirect role for microtubules.  相似文献   

11.
Growing evidence indicates a central role for p53 in mediating cell cycle arrest in response to mitotic spindle defects so as to prevent rereplication in cells in which the mitotic division has failed. Here we report that a transient inhibition of spindle assembly induced by nocodazole, a tubulin-depolymerizing drug, triggers a stable activation of p53, which can transduce a cell cycle inhibitory signal even when the spindle-damaging agent is removed and the spindle is allowed to reassemble. Cells transiently exposed to nocodazole continue to express high levels of p53 and p21 in the cell cycle that follows the transient exposure to nocodazole and become arrested in G(1), regardless of whether they carry a diploid or polyploid genome after mitotic exit. We also show that p53 normally associates with centrosomes in mitotic cells, whereas nocodazole disrupts this association. Together these results suggest that the induction of spindle damage, albeit transient, interferes with the subcellular localization of p53 at specific mitotic locations, which in turn dictates cell cycle arrest in the offspring of such defective mitoses.  相似文献   

12.
The 100-kDa "a" subunit of the vacuolar proton-translocating ATPase (V-ATPase) is encoded by two genes in yeast, VPH1 and STV1. The Vph1p-containing complex localizes to the vacuole, whereas the Stv1p-containing complex resides in some other intracellular compartment, suggesting that the a subunit contains information necessary for the correct targeting of the V-ATPase. We show that Stv1p localizes to a late Golgi compartment at steady state and cycles continuously via a prevacuolar endosome back to the Golgi. V-ATPase complexes containing Vph1p and Stv1p also differ in their assembly properties, coupling of proton transport to ATP hydrolysis, and dissociation in response to glucose depletion. To identify the regions of the a subunit that specify these different properties, chimeras were constructed containing the cytosolic amino-terminal domain of one isoform and the integral membrane, carboxyl-terminal domain from the other isoform. Like the Stv1p-containing complex, the V-ATPase complex containing the chimera with the amino-terminal domain of Stv1p localized to the Golgi and the complex did not dissociate in response to glucose depletion. Like the Vph1p-containing complex, the V-ATPase complex containing the chimera with the amino-terminal domain of Vph1p localized to the vacuole and the complex exhibited normal dissociation upon glucose withdrawal. Interestingly, the V-ATPase complex containing the chimera with the carboxyl-terminal domain of Vph1p exhibited a higher coupling of proton transport to ATP hydrolysis than the chimera containing the carboxyl-terminal domain of Stv1p. Our results suggest that whereas targeting and in vivo dissociation are controlled by sequences located in the amino-terminal domains of the subunit a isoforms, coupling efficiency is controlled by the carboxyl-terminal region.  相似文献   

13.
The effects of acrylamide (ACR), nocodazole, and latrunculin were studied on intracellular transport and cytoskeletal morphology in cultured Xenopus laevis melanophores, cells that are specialized for regulated and bidirectional melanosome transport. We used three different methods; light microscopy, fluorescence microscopy, and spectrophotometry. ACR affected the morphology of both microtubules and actin filaments in addition to inhibiting retrograde transport of melanosomes but leaving dispersion unaffected. Using the microtubule-inhibitor nocodazole and the actin filament-inhibitor latrunculin we found that microtubules and actin filaments are highly dependent on each other, and removing either component dramatically changed the organization of the other. Both ACR and latrunculin induced bundling of microtubules, while nocodazole promoted formation of filaments resembling stress fibers organized from the cell center to the periphery. Removal of actin filaments inhibited dispersion of melanosomes, further concentrated the central pigment mass in aggregated cells, and induced aggregation even in the absence of melatonin. Nocodazole, on the other hand, prevented aggregation and caused melanosomes to cluster and slowly disperse. Dispersion of nocodazole-treated cells was induced upon addition of alpha-melanocyte-stimulating hormone (MSH), showing that dispersion can proceed in the absence of microtubules, but the distribution pattern was altered. It is well established that ACR has neurotoxic effects, and based on the results in the present study we suggest that ACR has several cellular targets of which the minus-end microtubule motor dynein and the melatonin receptor might be involved. When combining morphological observations with qualitative and quantitative measurements of intracellular transport, melanophores provide a valuable model system for toxicological studies.  相似文献   

14.
15.
Behavior of Vero cells under the 2,3-butaneodione monoxime (BDM) treatment was examined using video-microscopy with contrast enhancement. After addition of BDM to the culture medium the area of cell contact with substratum gradually reduced--within 5 min of treatment cell lamellae became thicker, after 60 min the cell area decreased approximately 70 %, and the cells became nearly rounded. At the same time actin bundles (stress fibers) depolymerized, and microtubule network became denser. Partial depolymerization of microfilaments by treatment with latrunculin B at a concentration of 5 nM resulted in complete loss of stress fibers, yet cells slightly change their form, and microtubule system remained the same as in the control cells. However, after addition of BDM in the presence of latrunculin B cells retracted their lamellae more quickly then under BDM sole treatment. To evaluate the role of microtubules in the process of cell retraction we depolymerized them with nocodazole taken at the concentration of 5 ng/ml. Under nocodazole treatment the cell area decreased approximately 20 %, and stress fibers became more thick and abandon. The cells did not change their form, and stress fibers depolymerized very slowly under BDM treatment in the absence of microtubules. After 1 h of BDM treatment in the presence ofnocodazole stress fibers were still more numerous than in the control cells. Complete depolymerization of stress fibers happened in 90 % of cells only in 24 h after addition of BDM. When nocodazole had been washed out of the culture medium in the presence of BDM, lamellae started shrinking in 6 min. This time corresponds to the time required for the partial restoration of microtubule system. On the bases of the results obtained we conclude that retraction of the lamellae in Vero cells is guided rather mainly by microtubules, than stress-fibers.  相似文献   

16.
The microtubule inhibitor nocodazole {methyl-5-[2-(thienylcarbonyl)-1H-benzimidazol-2-yl]-carbamate} prevented nuclear migration and nuclear division in yeasts and developing multicellular forms of the polymorphic fungus Wangiella dermatitidis. It did not prevent yeast bud formation during at least two or three budding cycles, and caused yeasts to accumulate as premitotic forms with one to three buds. The effects of the drug suggested that at least three control pathways were involved in the yeast cell cycle; that the nocodazole block point was separate from the execution points of two temperature-sensitive mutations which lead to multicellularity; and that microtubules were controlling neither the yeast budding process nor the development of multicellular forms.Non-standard Abbreviations DMSO dimethylsulfoxide; nocodazole, methyl-5-[2-(thienylcarbonyl)-1H-benzimidazol-2-yl]-carbamate  相似文献   

17.
Functions of microtubules in the Saccharomyces cerevisiae cell cycle   总被引:67,自引:35,他引:32       下载免费PDF全文
We used the inhibitor nocodazole in conjunction with immunofluorescence and electron microscopy to investigate microtubule function in the yeast cell cycle. Under appropriate conditions, this drug produced a rapid and essentially complete disassembly of cytoplasmic and intranuclear microtubules, accompanied by a rapid and essentially complete block of cellular and nuclear division. These effects were similar to, but more profound than, the effects of the related drug methyl benzimidazole carbamate (MBC). In the nocodazole-treated cells, the selection of nonrandom budding sites, the formation of chitin rings and rings of 10-nm filaments at those sites, bud emergence, differential bud enlargement, and apical bud growth appeared to proceed normally, and the intracellular distribution of actin was not detectably perturbed. Thus, the cytoplasmic microtubules are apparently not essential for the establishment of cell polarity and the localization of cell-surface growth. In contrast, nocodazole profoundly affected the behavior of the nucleus. Although spindle-pole bodies (SPBs) could duplicate in the absence of microtubules, SPB separation was blocked. Moreover, complete spindles present at the beginning of drug treatment appeared to collapse, drawing the opposed SPBs and associated nuclear envelope close together. Nuclei did not migrate to the mother-bud necks in nocodazole-treated cells, although nuclei that had reached the necks before drug treatment remained there. Moreover, the double SPBs in arrested cells were often not oriented toward the budding sites, in contrast to the situation in normal cells. Thus, microtubules (cytoplasmic, intranuclear, or both) appear to be necessary for the migration and proper orientation of the nucleus, as well as for SPB separation, spindle function, and nuclear division.  相似文献   

18.
The 26S proteasome is the major protein degradation machinery of the cell and is regulated at many levels. One mode of regulation involves accumulation of proteasomes in proteasome storage granules (PSGs) upon glucose depletion. Using a systematic robotic screening approach in yeast, we identify trans-acting proteins that regulate the accumulation of proteasomes in PSGs. Our dataset was enriched for subunits of the vacuolar adenosine triphosphatase (V-ATPase) complex, a proton pump required for vacuole acidification. We show that the impaired ability of V-ATPase mutants to properly govern intracellular pH affects the kinetics of PSG formation. We further show that formation of other protein aggregates upon carbon depletion also is triggered in mutants with impaired activity of the plasma membrane proton pump and the V-ATPase complex. We thus identify cytosolic pH as a specific cellular signal involved both in the glucose sensing that mediates PSG formation and in a more general mechanism for signaling carbon source exhaustion.  相似文献   

19.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

20.
Insulin and muscle contractions stimulate glucose transport in skeletal muscle through a translocation of intracellular GLUT4 glucose transporters to the cell surface. Judged by immunofluorescence microscopy, part of the GLUT4 storage sites is associated with the extensive microtubule cytoskeleton found in all muscle fibers. Here, we test whether microtubules are required mediators of the effect of insulin and contractions. In three different incubated rat muscles with distinct fiber type composition, depolymerization of microtubules with colchicine for < or =8 h did not inhibit insulin- or contraction-stimulated 2-deoxyglucose transport or force production. On the contrary, colchicine at least partially prevented the approximately 30% decrease in insulin-stimulated transport that specifically developed during 8 h of incubation in soleus muscle but not in flexor digitorum brevis or epitrochlearis muscles. In contrast, nocodazole, another microtubule-disrupting drug, rapidly and dose dependently blocked insulin- and contraction-stimulated glucose transport. A similar discrepancy between colchicine and nocodazole was also found in their ability to block glucose transport in muscle giant "ghost" vesicles. This suggests that the ability of insulin and contractions to stimulate glucose transport in muscle does not require an intact microtubule network and that nocodazole inhibits glucose transport independently of its microtubule-disrupting effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号