首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 205 毫秒
1.
Subgenomic mRNA of Aura alphavirus is packaged into virions.   总被引:6,自引:5,他引:1       下载免费PDF全文
Purified virions of Aura virus, a South American alphavirus related to Sindbis virus, were found to contain two RNA species, one of 12 kb and the other of 4.2 kb. Northern (RNA) blot analysis, primer extension analysis, and limited sequencing showed that the 12-kb RNA was the viral genomic RNA, whereas the 4.2-kb RNA present in virus preparations was identical to the 26S subgenomic RNA present in infected cells. The subgenomic RNA is the messenger for translation of the viral structural proteins, and its synthesis is absolutely required for replication of the virus. Although 26S RNA is present in the cytosol of all cells infected by alphaviruses, this is the first report of incorporation of the subgenomic RNA into alphavirus particles. Packaging of the Aura virus subgenomic mRNA occurred following infection of mosquito (Aedes albopictus C6/36), hamster (BHK-21), or monkey (Vero) cells. Quantitation of the amounts of genomic and subgenomic RNA both in virions and in infected cells showed that the ratio of genomic to subgenomic RNA was 3- to 10-fold higher in Aura virions than in infected cells. Thus, although the subgenomic RNA is packaged efficiently, the genomic RNA has a selective advantage during packaging. In contrast, in parallel experiments with Sindbis virus, packaging of subgenomic RNA was not detectable. We also found that subgenomic RNA was present in about threefold-greater amounts relative to genomic RNA in cells infected by Aura virus than in cells infected by Sindbis virus. Packaging of the Aura virus subgenomic RNA, but not those of other alphaviruses, suggests that Aura virus 26S RNA contains a packaging signal for incorporation into virions. The importance of the packaging of this RNA into virions in the natural history of the virus remains to be determined.  相似文献   

2.
Although alphaviruses have been extensively studied as model systems for the structural organization of enveloped viruses, no structures exist for the phylogenetically distinct eastern equine encephalomyelitis (EEE)-Venezuelan equine encephalomyelitis (VEE) lineage of New World alphaviruses. Here we report the 25-A structure of VEE virus, obtained from electron cryomicroscopy and image reconstruction. The envelope spike glycoproteins of VEE virus have a T=4 icosahedral arrangement, similar to that observed in Old World Sindbis, Semliki Forest, and Ross River alphaviruses. However, VEE virus has pronounced differences in its nucleocapsid structure relative to nucleocapsid structures repeatedly observed in Old World alphaviruses.  相似文献   

3.
Three Aedes albopictus (mosquito) cell lines persistently infected with Sindbis virus excluded the replication of both homologous (various strains of Sindbis) and heterologous (Aura, Semliki Forest, and Ross River) alphaviruses. In contrast, an unrelated flavivirus, yellow fever virus, replicated equally well in uninfected and persistently infected cells of each line. Sindbis virus and Semliki Forest virus are among the most distantly related alphaviruses, and our results thus indicate that mosquito cells persistently infected with Sindbis virus are broadly able to exclude other alphaviruses but that exclusion is restricted to members of the alphavirus genus. Superinfection exclusion occurred to the same extent in three biologically distinct cell clones, indicating that the expression of superinfection exclusion is conserved among A. albopictus cell types. Superinfection of persistently infected C7-10 cells, which show a severe cytopathic effect during primary Sindbis virus infection, by homologous virus does not produce cytopathology, consistent with the idea that cytopathology requires significant levels of viral replication. A possible model for the molecular basis of superinfection exclusion, which suggests a central role for the alphavirus trans-acting protease that processes the nonstructural proteins, is discussed in light of these results.  相似文献   

4.
We have studied interactions between nucleocapsids and glycoproteins required for budding of alphaviruses, using Ross River virus-Sindbis virus chimeras in which the nucleocapsid protein is derived from one virus and the envelope glycoproteins are derived from the second virus. A virus containing the Ross River virus genome in which the capsid protein had been replaced with that from Sindbis virus was almost nonviable. Nucleocapsids formed in normal numbers in the infected cell, but very little virus was released from the cell. There are 11 amino acid differences between Ross River virus and Sindbis virus in their 33-residue E2 cytoplasmic domains. Site-specific mutagenesis was used to change 9 of these 11 amino acids in the chimera from the Ross River virus to the Sindbis virus sequence in an attempt to adapt the E2 of the chimera to the nucleocapsid. The resulting mutant chimera grew 4 orders of magnitude better than the parental chimeric virus. This finding provides direct evidence for a sequence-specific interaction between the nucleocapsid and the E2 cytoplasmic domain during virus budding. The mutated chimeric virus readily gave rise to large-plaque variants that grew almost as well as Ross River virus, suggesting that additional single amino acid substitutions in the structural proteins can further enhance the interactions between the disparate capsid and the glycoproteins. Unexpectedly, change of E2 residue 394 from lysine (Ross River virus) to glutamic acid (Sindbis virus) was deleterious for the chimera, suggesting that in addition to its role in nucleocapsid-E2 interactions, the N-terminal part of the E2 cytoplasmic domain may be involved in glycoprotein-glycoprotein interactions required to assemble the glycoprotein spikes. The reciprocal chimera, Sindbis virus containing the Ross River virus capsid, also grew poorly. Suppressor mutations arose readily in this chimera, producing a virus that grew moderately well and that formed larger plaques.  相似文献   

5.
Sindbis virus and Ross River virus are alphaviruses whose nonstructural proteins share 64% identity and whose structural proteins share 48% identity. Starting from full-length cDNA clones of both viruses, we have generated two reciprocal Sindbis-Ross River chimeric viruses in which the structural and nonstructural regions have been exchanged. These chimeric viruses replicate readily in several cell lines. Both chimeras grow more poorly than do the parental viruses, with the chimera containing Sindbis virus nonstructural proteins and Ross River virus structural proteins growing considerably better in both mosquito and Vero cell lines than the reciprocal chimera does. The reduction in replicative capacity in comparison with the parental viruses appears to result at least in part from a reduction in RNA synthesis, which suggests that the structural proteins or sequence elements within the structural region interact with the nonstructural proteins or sequence elements within the nonstructural region, that these interactions are required for efficient RNA replication, and that these interactions are suboptimal in the chimeras. The chimeras are able to infect mice, but their growth is attenuated. Western equine encephalitis virus, a virus widely distributed throughout the Americas, has been previously shown to have arisen by natural recombination between two distinct alphaviruses, but other naturally occurring recombinant alphaviruses have not been found. The present results suggest that most nonstructural/structural chimeras that might arise by natural recombination will be viable but that interactions between different regions of the genome, some of which were previously known but some of which remain unknown, limit the ability of such recombinants to become established.  相似文献   

6.
We have demonstrated previously that the cellular HuR protein binds U-rich elements in the 3′ untranslated region (UTR) of Sindbis virus RNA and relocalizes from the nucleus to the cytoplasm upon Sindbis virus infection in 293T cells. In this study, we show that two alphaviruses, Ross River virus and Chikungunya virus, lack the conserved high-affinity U-rich HuR binding element in their 3′ UTRs but still maintain the ability to interact with HuR with nanomolar affinities through alternative binding elements. The relocalization of HuR protein occurs during Sindbis infection of multiple mammalian cell types as well as during infections with three other alphaviruses. Interestingly, the relocalization of HuR is not a general cellular reaction to viral infection, as HuR protein remained largely nuclear during infections with dengue and measles virus. Relocalization of HuR in a Sindbis infection required viral gene expression, was independent of the presence of a high-affinity U-rich HuR binding site in the 3′ UTR of the virus, and was associated with an alteration in the phosphorylation state of HuR. Sindbis virus-induced HuR relocalization was mechanistically distinct from the movement of HuR observed during a cellular stress response, as there was no accumulation of caspase-mediated HuR cleavage products. Collectively, these data indicate that virus-induced HuR relocalization to the cytoplasm is specific to alphavirus infections and is associated with distinct posttranslational modifications of this RNA-binding protein.  相似文献   

7.
The rat zinc-finger antiviral protein (ZAP) was recently identified as a host protein conferring resistance to retroviral infection. We analyzed ZAP's ability to inhibit viruses from other families and found that ZAP potently inhibits the replication of multiple members of the Alphavirus genus within the Togaviridae, including Sindbis virus, Semliki Forest virus, Ross River virus, and Venezuelan equine encephalitis virus. However, expression of ZAP did not induce a broad-spectrum antiviral state as some viruses, including vesicular stomatitis virus, poliovirus, yellow fever virus, and herpes simplex virus type 1, replicated to normal levels in ZAP-expressing cells. We determined that ZAP expression inhibits Sindbis virus replication after virus penetration and entry, but before the amplification of newly synthesized plus strand genomic RNA. Using a temperature-sensitive Sindbis virus mutant expressing luciferase, we further showed that translation of incoming viral RNA is blocked by ZAP expression. Elucidation of the antiviral mechanism by which ZAP inhibits Sindbis virus translation may lead to the development of agents with broad activity against alphaviruses.  相似文献   

8.
There are 80 trimeric, glycoprotein spikes that cover the surface of an alphavirus particle. The spikes, which are composed of three E2 and E1 glycoprotein heterodimers, are responsible for receptor binding and mediating fusion between the viral and host-cell membranes during entry. In addition, the cytoplasmic domain of E2 interacts with the nucleocapsid core during the last stages of particle assembly, possibly to aid in particle stability. During assembly, the spikes are nonfusogenic until the E3 glycoprotein is cleaved from E2 in the trans-Golgi network. Thus, a mutation in E2 potentially has effects on virus entry, spike assembly, or spike maturation. E2 is a highly conserved, cysteine-rich transmembrane glycoprotein. We made single cysteine-to-serine mutations within two distinct regions of the E2 ectodomain in both Sindbis virus and Ross River virus. Each of the E2 Cys mutants produced fewer infectious particles than wild-type virus. Further characterization of the mutant viruses revealed differences in particle morphology, fusion activity, and polyprotein cleavage between Sindbis and Ross River virus mutants, despite the mutations being made at corresponding positions in E2. The nonconserved assembly defects suggest that E2 folding and function is species dependent, possibly due to interactions with a virus-specific chaperone.  相似文献   

9.
Alphaviruses such as Ross River virus (RRV), chikungunya virus (CHIKV), Sindbis virus (SINV), and Venezuelan equine encephalitis virus (VEEV) are mosquito-borne pathogens that can cause arthritis or encephalitis diseases. Nonstructural protein 4 (nsP4) of alphaviruses possesses RNA-dependent RNA polymerase (RdRp) activity essential for viral RNA replication. No 3D structure has been available for nsP4 of any alphaviruses despite its importance for understanding alphaviral RNA replication and for the design of antiviral drugs. Here, we report crystal structures of the RdRp domain of nsP4 from both RRV and SINV determined at resolutions of 2.6 Å and 1.9 Å. The structure of the alphavirus RdRp domain appears most closely related to RdRps from pestiviruses, noroviruses, and picornaviruses. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) and nuclear magnetic resonance (NMR) methods showed that in solution, nsP4 is highly dynamic with an intrinsically disordered N-terminal domain. Both full-length nsP4 and the RdRp domain were capable to catalyze RNA polymerization. Structure-guided mutagenesis using a trans-replicase system identified nsP4 regions critical for viral RNA replication.  相似文献   

10.
The production of the alphavirus virion is a multistep event requiring the assembly of the nucleocapsid core in the cytoplasm and the maturation of the glycoproteins in the endoplasmic reticulum and the Golgi apparatus. These components associate during the budding process to produce the mature virion. The nucleocapsid proteins of Sindbis virus and Ross River virus have been produced in a T7-based Escherichia coli expression system and purified. In the presence of single-stranded but not double-stranded nucleic acid, the proteins oligomerize in vitro into core-like particles which resemble the native viral nucleocapsid cores. Despite their similarities, Sindbis virus and Ross River virus capsid proteins do not form mixed core-like particles. Truncated forms of the Sindbis capsid protein were used to establish amino acid requirements for assembly. A capsid protein starting at residue 19 [CP(19-264)] was fully competent for in vitro assembly, whereas proteins with further N-terminal truncations could not support assembly. However, a capsid protein starting at residue 32 or 81 was able to incorporate into particles in the presence of CP(19-264) or could inhibit assembly if its molar ratio relative to CP(19-264) was greater than 1:1. This system provides a basis for the molecular dissection of alphavirus core assembly.  相似文献   

11.
Maximum amounts of 42S and 26S single-stranded viral RNA and viral structural proteins were synthesized in Aedes albopictus cells at 24 h after Sindbis virus infection. Thereafter, viral RNA and protein syntheses were inhibited. By 3 days postinfection, only small quantities of 42S RNA and no detectable 26S RNA or structural proteins were synthesized in infected cells. Superinfection of A. albopictus cells 3 days after Sindbis virus infection with Sindbis, Semliki Forest, Una, or Chikungunya alphavirus did not lead to the synthesis of intracellular 26S viral RNA. In contrast, infection with snowshoe hare virus, a bunyavirus, induced the synthesis of snowshoe hare virus RNA in both A. Ablpictus cells 3 days after Sindbis virus infection and previously uninfected mosquito cells. These results suggested that at 3 days after infection with Sindbis virus, mosquito cells restricted the replication of both homologous and heterologous alphaviruses but remained susceptible to infection with a bunyavirus. In superinfection experiments the the alphaviruses were differentiated on the basis of plaque morphology and the electrophoretic mobility of their intracellular 26S viral RNA species. Thus, it was shown that within 1 h after infection with eigher Sindbis or Chikungunya virus, A. albopictus cells were resistant to superinfection with Sindbis, Chikungunya, Una, and Semliki Forest viruses. Infected cultures were resistant to superinfection with the homologous virus indefinitely, but maximum resistance to superinfection with heterologous alphaviruses lasted for approximately 8 days. After that time, infected cultures supported the replication of heterologous alphaviruses to the same extent as did persistently infected cultures established months previously. However, the titer of heterologous alphavirus produced after superinfection of persistently infected cultures was 10- to 50-fold less than that produced by an equal number of previously uninfected A. albopictus cells. Only a small proportion (8 to 10%) of the cells in a persistently infected culture was capable of supporting the replication of a heterologous alphavirus.  相似文献   

12.
Chimeric alphaviruses in which the 6K and glycoprotein E1 moieties of Sindbis virus are replaced with those of Ross River virus grow very poorly, but upon passage, adapted variants arise that grow >100 times better. We have sequenced the entire domain encoding the E2, 6K, and E1 proteins of a number of these adapted variants and found that most acquired two amino acid changes, which had cumulative effects. In three independent passage series, amino acid 380 of E2, which is in the transmembrane domain, was mutated from the original isoleucine to serine in two instances and to valine once. We have now changed this residue to seven others by site-directed mutagenesis and tested the effects of these mutations on the growth of both the chimera [SIN(RRE1)] and of parental Sindbis. These results indicate that the transmembrane domains of glycoproteins E2 and E1 of alphaviruses interact in a sequence-dependent manner and that this interaction is required for efficient budding and assembly of infectious virions.  相似文献   

13.
14.
The 3' end of Sindbis virus minus-sense RNA was tested for its ability to bind proteins in mosquito cell extracts, using labeled riboprobes that represented different parts of this region. We found four domains in the first 250 nucleotides that could bind the same 50- and 52-kDa proteins, three with high affinity and one with low affinity, whereas tested domains outside this region did not bind these proteins. The first binding domain was found in the first 60 nucleotides, which represents the complement of the 5'-nontranslated region, the second in the next 60 nucleotides, the third in the following 60 nucleotides, and the fourth between nucleotides 194 and 249 (all numbering is 3' to 5'). The relative binding constants, Kr, of the first, second, and fourth sites were similar, whereas that of domain 2 was fivefold less. Deletion mapping of the first domain showed that the first 10 nucleotides were critical for binding. Deletion of nucleotides 2 to 4, deletion or replacement of nucleotide 5, or deletion of the first 15 nucleotides was deleterious for binding, deletion of nucleotides 10 to 15, 26 to 40, or 41 to 55 had little effect on the binding, and deletion of nucleotides 15 to to 25 increased the binding affinity. We also found that the corresponding riboprobes derived from two other alphaviruses, Ross River virus and Semliki Forest virus, and from rubella virus were also able to interact with the 50- and 52-kDa proteins. The Kr value for the Semliki Forest virus probe was similar to that for the Sindbis virus probe, while that for the Ross River virus probe was four times greater. The rubella virus probe was bound only weakly, consistent with the fact that mosquito cells are not permissive for rubella virus replication. We suggest that the binding of the 50- and 52-kDa proteins to the 3' end of alphavirus minus-sense RNA represents an important step in the initiation of RNA replication.  相似文献   

15.
Glycoprotein PE2 of Sindbis virus will form a heterodimer with glycoprotein E1 of Ross River virus that is cleaved to an E2/E1 heterodimer and transported to the cell plasma membrane, but this chimeric heterodimer fails to interact with Sindbis virus nucleocapsids, and very little budding to produce mature virus occurs upon infection with chimeric viruses. We have isolated in both Sindbis virus E2 and in Ross River virus E1 a series of suppressing mutations that adapt these two proteins to one another and allow increased levels of chimeric virus production. Two adaptive E1 changes in an ectodomain immediately adjacent to the membrane anchor and five adaptive E2 changes in a 12-residue ectodomain centered on Asp-242 have been identified. One change in Ross River virus E1 (Gln-411→Leu) and one change in Sindbis virus E2 (Asp-248→Tyr) were investigated in detail. Each change individually leads to about a 10-fold increase in virus production, and combined the two changes lead to a 100-fold increase in virus. During passage of a chimeric virus containing Ross River virus E1 and Sindbis virus E2, the E2 change was first selected, followed by the E1 change. Heterodimers containing these two adaptive mutations have a demonstrably increased degree of interaction with Sindbis virus nucleocapsids. In the parental chimera, no interaction between heterodimers and capsids was visible at the plasma membrane in electron microscopic studies, whereas alignment of nucleocapsids along the plasma membrane, indicating interaction of heterodimers with nucleocapsids, was readily seen in the adapted chimera. The significance of these findings in light of our current understanding of alphavirus budding is discussed.  相似文献   

16.
Western equine encephalomyelitis (WEE) virus (Togaviridae: Alphavirus) was shown previously to have arisen by recombination between eastern equine encephalomyelitis (EEE)- and Sindbis-like viruses (C. S. Hahn, S. Lustig, E. G. Strauss, and J. H. Strauss, Proc. Natl. Acad. Sci. USA 85:5997-6001, 1988). We have now examined the recombinational history and evolution of all viruses belonging to the WEE antigenic complex, including the Buggy Creek, Fort Morgan, Highlands J, Sindbis, Babanki, Ockelbo, Kyzylagach, Whataroa, and Aura viruses, using nucleotide sequences derived from representative strains. Two regions of the genome were examined: sequences of 477 nucleotides from the C terminus of the E1 envelope glycoprotein gene which in WEE virus was derived from the Sindbis-like virus parent, and 517 nucleotide sequences at the C terminus of the nsP4 gene which in WEE virus was derived from the EEE-like virus parent. Trees based on the E1 region indicated that all members of the WEE virus complex comprise a monophyletic group. Most closely related to WEE viruses are other New World members of the complex: the Highlands J, Buggy Creek, and Fort Morgan viruses. More distantly related WEE complex viruses included the Old World Sindbis, Babanki, Ockelbo, Kyzylagach, and Whataroa viruses, as well as the New World Aura virus. Detailed analyses of 38 strains of WEE virus revealed at least 4 major lineages; two were represented by isolates from Argentina, one was from Brazil, and a fourth contained isolates from many locations in South and North America as well as Cuba. Trees based on the nsP4 gene indicated that all New World WEE complex viruses except Aura virus are recombinants derived from EEE- and Sindbis-like virus ancestors. In contrast, the Old World members of the WEE complex, as well as Aura virus, did not appear to have recombinant genomes. Using an evolutionary rate estimate (2.8 x 10(-4) substitutions per nucleotide per year) obtained from E1-3' sequences of WEE viruses, we estimated that the recombination event occurred in the New World 1,300 to 1,900 years ago. This suggests that the alphaviruses originated in the New World a few thousand years ago.  相似文献   

17.
Rubella virus is the only member of the Rubivirus genus within the Togaviridae family and is the causative agent of the childhood disease known as rubella or German measles. Here, we report the use of cryo-electron tomography to examine the three-dimensional structure of rubella virions and compare their structure to that of Ross River virus, a togavirus belonging the genus Alphavirus. The ectodomains of the rubella virus glycoproteins, E1 and E2, are shown to be organized into extended rows of density, separated by 9 nm on the viral surface. We also show that the rubella virus nucleocapsid structure often forms a roughly spherical shell which lacks high density at its center. While many rubella virions are approximately spherical and have dimensions similar to that of the icosahedral Ross River virus, the present results indicate that rubella exhibits a large degree of pleomorphy. In addition, we used rotation function calculations and other analyses to show that approximately spherical rubella virions lack the icosahedral organization which characterizes Ross River and other alphaviruses. The present results indicate that the assembly mechanism of rubella virus, which has previously been shown to differ from that of the alphavirus assembly pathway, leads to an organization of the rubella virus structural proteins that is different from that of alphaviruses.  相似文献   

18.
Packaging signals in alphaviruses.   总被引:8,自引:8,他引:0       下载免费PDF全文
Alphaviruses synthesize large amounts of both genomic and subgenomic RNA in infected cells, but usually only the genomic RNA is packaged. This implies the existence of an encapsidation or packaging signal which would be responsible for selectivity. Previously, we had identified a region of the Sindbis virus genome that interacts specifically with the viral capsid protein. This 132-nucleotide (nt) fragment lies within the coding region of the nsP1 gene (nt 945 to 1076). We proposed that the 132-mer is important for capsid recognition and initiates the formation of the viral nucleocapsid. To study the encapsidation of Sindbis virus RNAs in infected cells, we designed a new assay that uses the self-replicating Sindbis virus genomes (replicons) which lack the viral structural protein genes and contain heterologous sequences under the control of the subgenomic RNA promoter. These replicons can be packaged into viral particles by using defective helper RNAs that contain the structural protein genes (P. Bredenbeek, I. Frolov, C. M. Rice, and S. Schlesinger, J. Virol. 67:6439-6446, 1993). Insertion of the 132-mer into the subgenomic RNA significantly increased the packaging of this RNA into viral particles. We have used this assay and defective helpers that contain the structural protein genes of Ross River virus (RRV) to investigate the location of the encapsidation signal in the RRV genome. Our results show that there are several fragments that could act as packaging signals. They are all located in a different region of the genome than the signal for the Sindbis virus genome. For RRV, the strongest packaging signal lies between nt 2761 and 3062 in the nsP2 gene. This is the same region that was proposed to contain the packaging signal for Semliki Forest virus genomic RNA.  相似文献   

19.
Sindbis virus generates defective interfering (DI) particles during serial high-multiplicity passage in cultured cells. These DI particles inhibit the replication of infectious virus and can be an important factor in the establishment and maintenance of persistent infection in BHK cells. In an effort to understand how these DI particles are generated and how they interfere with the replication of standard virus, we performed a partial sequence analysis of the RNA obtained from two independently isolated populations of DI particles and from two Sindbis virus variants and compared these with the RNA of the parental wild-type virus. The 3'-terminal regions of the RNAs were sequenced by the dideoxy chain terminating method. Internal regions of the RNA were examined by restriction endonuclease digestion of cDNA's made to the various RNAs and by direct chemical sequencing of 5' end-labeled restriction fragments from cDNA made to the DI RNAs. One of the variant viruses examined was originally derived from cells persistently infected with Sindbis virus for 16 months and is resistant to interference by the DI strains used. In the 3'-terminal region of the RNA from this variant, only two base changes were found; one of these occurs in the 20-nucleotide 3'-terminal sequence which is highly conserved among alphaviruses. The DI RNA sequences were found to have been produced not by a single deletional event, but by multiple deletion steps combined with sequence rearrangements; all sequences examined are derived from the plus strand of Sindbis virion RNA. Both DI RNAs had at least 50 nucleotides of wild-type sequence conserved at the 3' terminus; in addition, they both contained conserved and perhaps amplified sequences derived from the non-26S region of the genome which may be of importance in their replication and interference ability.  相似文献   

20.
Across the Pacific, and including in the Solomon Islands, outbreaks of arboviruses such as dengue, chikungunya, and Zika are increasing in frequency, scale and impact. Outbreaks of mosquito-borne disease have the potential to overwhelm the health systems of small island nations. This study mapped the seroprevalence of dengue, Zika, chikungunya and Ross River viruses in 5 study sites in the Solomon Islands. Serum samples from 1,021 participants were analysed by ELISA. Overall, 56% of participants were flavivirus-seropositive for dengue (28%), Zika (1%) or both flaviviruses (27%); and 53% of participants were alphavirus-seropositive for chikungunya (3%), Ross River virus (31%) or both alphaviruses (18%). Seroprevalence for both flaviviruses and alphaviruses varied by village and age of the participant. The most prevalent arboviruses in the Solomon Islands were dengue and Ross River virus. The high seroprevalence of dengue suggests that herd immunity may be a driver of dengue outbreak dynamics in the Solomon Islands. Despite being undetected prior to this survey, serology results suggest that Ross River virus transmission is endemic. There is a real need to increase the diagnostic capacities for each of the arboviruses to support effective case management and to provide timely information to inform vector control efforts and other outbreak mitigation interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号