首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phosphorylation of the regulatory light chains (RMLC) of nonmuscle myosin can increase the actin-activated ATPase activity and filament formation. Little is known about these regulatory mechanisms and how the RMLC are involved in ATP hydrolysis. To better characterize the nonmuscle RMLC, we isolated cDNAs encoding the Dictyostelium RMLC. Using an antibody specific for the RMLC, we screened a lambda gt11 expression library and obtained a 200-base-pair clone that encoded a portion of the RMLC. The remainder of the sequence was obtained from two clones identified by DNA hybridization, using the 200-base-pair cDNA. The composite RMLC cDNA was 645 nucleotides long. It contained 60 base pairs of 5' untranslated, 483 bases of coding, and 102 base pairs of 3' untranslated sequence. The amino acid sequence predicted an 18,300-dalton protein that shares 42% amino acid identity with Dictyostelium calmodulin and 30% identity with the chicken skeletal myosin RMLC. This sequence contained three regions that were similar to the E-F hand calcium-binding domains found in calmodulin, troponin C, and other myosin light chains. A sequence similar to the phosphorylation sequence found in chicken gizzard and skeletal myosin light chains was found at the amino terminus. Genomic Southern blot analysis suggested that the Dictyostelium genome contains a single gene encoding the RMLC. Analysis of RMLC expression patterns during Dictyostelium development indicated that accumulation of this mRNA increases just before aggregation and again during culmination. This pattern is similar to that obtained for the Dictyostelium essential myosin light chain and suggests that expression of the two light chains is coordinated during development.  相似文献   

2.
3.
The Dictyostelium essential light chain is required for myosin function.   总被引:14,自引:0,他引:14  
A Dictyostelium mutant (7-11) that expresses less than 0.5% of wild-type levels of the myosin essential light chain (EMLC) has been created by overexpression of antisense RNA. Cells from 7-11 contain wild-type levels of the myosin heavy chain (MHC) and regulatory light chain (RMLC). Myosin isolated from 7-11 cells consists of the MHC with the RMLC associated in reduced stoichiometry, and binds to purified actin in an ATP-sensitive fashion. Purified 7-11 myosin displays calcium-activated ATPase activity with a Vmax about 15%-25% of that of wild type, and a Km for ATP of 27 +/- 5 microM versus 83 +/- 30 microM for wild type. At actin concentrations as high as 17 microM, 7-11 myosin displays greatly reduced actin-activated ATPase activity. Phenotypically, 7-11 cells resemble MHC mutants, growing poorly in suspension and becoming large and multinucleate. When starved for multicellular development, 7-11 cells take several hours longer than wild-type cells to aggregate. Although multicellular aggregates eventually form, they fail to develop further. The cells are also unable to cap receptors in response to Con A treatment. Since cells expressing the EMLC are phenotypically similar to MHC null mutants, the EMLC appears necessary for myosin function, at least in part because it is required for normal actin-activated ATPase activity.  相似文献   

4.
Role of myosin light chain phosphorylation in the regulation of cytokinesis   总被引:1,自引:0,他引:1  
Phosphorylation of regulatory light chain (RMLC) of myosin II at Ser19/Thr18 is likely to play important roles in controlling the morphological changes seen during cell division of cultured mammalian cells. Phosphorylation of RMLC regulates the activity of myosin II, an essntial motor for cytokinesis, and phosphorylation of RMLC shows dramatic changes during mitosis. Two exzymes, myosin phosphatase and kinase, control phosphorvlation of RMLC. Myosin phosphatase is activated during mitosis, apparently as a result of mitosis-specific phosphorylation of the myosin phosphatase targeting subunit (MYPT). This activation of myosin phosphatase is likely to result in RMLC dephosphorylation, causing the disassemly of stress fibers and focal adhesions during prophase. The phosphorylation of MYPT is lost in cyotokinesis, which would decrease myosin phosphatase activity. At the same time, ROCK (Rho-kinase) probably phosphorylates MYPT at its inhibitory sites, further decreasing the activity of myosin phosphatase. These changes in MYPT phosphorylation would raise RMLC phosphorylation, leading to the activation of myosin II for cyotokinesis. RMLC phosphorylation is also regulated by several RMLC kinases including ROCK (Rho-kinase), MLCK and citron kinase, all of which are localized at cleavage furrows. Future studies should examine whether these multiple kinases are redundant or whether they control distinct aspects of cell division.  相似文献   

5.
Regulation of embryonic smooth muscle myosin by protein kinase C   总被引:2,自引:0,他引:2  
Phosphorylation of the 20-kDa light chain regulates adult smooth muscle myosin; phosphorylation by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase stimulates the actomyosin ATPase activity of adult smooth muscle myosin; the simultaneous phosphorylation of a separate site on the 20-kDa light chain by the Ca2+/phospholipid-dependent enzyme protein kinase C attenuates the myosin light chain kinase-induced increase in the actomyosin ATPase activity of adult myosin. Fetal smooth muscle myosin, purified from 12-day-old fertilized chicken eggs, is structurally different from adult smooth muscle myosin. Nevertheless, phosphorylation of a single site on the 20-kDa light chain of fetal myosin by myosin light chain kinase results in stimulation of the actomyosin ATPase activity of this myosin. Protein kinase C, in contrast, phosphorylates three sites on the fetal myosin 20-kDa light chain including a serine or threonine residue on the same peptide phosphorylated by myosin light chain kinase. Interestingly, phosphorylation by protein kinase C stimulates the actomyosin ATPase activity of fetal myosin. Moreover, unlike adult myosin, there is no attenuation of the actomyosin ATPase activity when fetal myosin is simultaneously phosphorylated by myosin light chain kinase and protein kinase C. These data demonstrate, for the first time, the in vitro activation of a smooth muscle myosin by another enzyme besides myosin light chain kinase and raise the possibility of alternate pathways for regulating smooth muscle myosin in vivo.  相似文献   

6.
The Drosophila spaghetti squash (sqh) gene encodes the regulatory myosin light chain (RMLC) of nonmuscle myosin II. Biochemical analysis of vertebrate nonmuscle and smooth muscle myosin II has established that phosphorylation of certain amino acids of the RMLC greatly increases the actin-dependent myosin ATPase and motor activity of myosin in vitro. We have assessed the in vivo importance of these sites, which in Drosophila correspond to serine-21 and threonine-20, by creating a series of transgenes in which these specific amino acids were altered. The phenotypes of the transgenes were examined in an otherwise null mutant background during oocyte development in Drosophila females.

Germ line cystoblasts entirely lacking a functional sqh gene show severe defects in proliferation and cytokinesis. The ring canals, cytoplasmic bridges linking the oocyte to the nurse cells in the egg chamber, are abnormal, suggesting a role of myosin II in their establishment or maintenance. In addition, numerous aggregates of myosin heavy chain accumulate in the sqh null cells. Mutant sqh transgene sqh-A20, A21 in which both serine-21 and threonine-20 have been replaced by alanines behaves in most respects identically to the null allele in this system, with the exception that no heavy chain aggregates are found. In contrast, expression of sqh-A21, in which only the primary phosphorylation target serine-21 site is altered, partially restores functionality to germ line myosin II, allowing cystoblast division and oocyte development, albeit with some cytokinesis failure, defects in the rapid cytoplasmic transport from nurse cells to cytoplasm characteristic of late stage oogenesis, and some damaged ring canals. Substituting a glutamate for the serine-21 (mutant sqh-E21) allows oogenesis to be completed with minimal defects, producing eggs that can develop normally to produce fertile adults. Flies expressing sqh-A20, in which only the secondary phosphorylation site is absent, appear to be entirely wild type. Taken together, this genetic evidence argues that phosphorylation at serine-21 is critical to RMLC function in activating myosin II in vivo, but that the function can be partially provided by phosphorylation at threonine-20.

  相似文献   

7.
The alternatively spliced isoform of nonmuscle myosin II heavy chain B (MHC-IIB) with an insert of 21 amino acids in the actin-binding surface loop (loop 2), MHC-IIB(B2), is expressed specifically in the central nervous system of vertebrates. To examine the role of the B2 insert in the motor activity of the myosin II molecule, we expressed chimeric myosin heavy chain molecules using the Dictyostelium myosin II heavy chain as the backbone. We replaced the Dictyostelium native loop 2 with either the noninserted form of loop 2 from human MHC-IIB or the B2-inserted form of loop 2 from human MHC-IIB(B2). The transformant Dictyostelium cells expressing only the B2-inserted chimeric myosin formed unusual fruiting bodies. We then assessed the function of chimeric proteins, using an in vitro motility assay and by measuring ATPase activities and binding to F-actin. We demonstrate that the insertion of the B2 sequence reduces the motor activity of Dictyostelium myosin II, with reduction of the maximal actin-activated ATPase activity and a decrease in the affinity for actin. In addition, we demonstrate that the native loop 2 sequence of Dictyostelium myosin II is required for the regulation of the actin-activated ATPase activity by phosphorylation of the regulatory light chain.  相似文献   

8.
We previously reported (Berlot, C. H., Spudich, J. A., and Devreotes, P. N. (1985) Cell 43, 307-314) that cAMP stimulation of chemotactically competent Dictyostelium amoebae causes transient increases in phosphorylation of the myosin heavy chain and 18,000-dalton light chain in vivo and in vitro. In this report we investigate the mechanisms involved in these changes in phosphorylation. In the case of heavy chain phosphorylation, the amount of substrate available for phosphorylation appears to be the major factor regulating the in vitro phosphorylation rate. Almost all heavy chain kinase activity is insoluble in Triton X-100, and the increase in the heavy chain phosphorylation rate in vitro parallels an increase in Triton insolubility of myosin. Changes in heavy chain phosphatase activity are not involved in the changes in the in vitro phosphorylation rate. In the case of light chain phosphorylation, increases in the vitro phosphorylation rate occur under conditions where the amount of substrate available for phosphorylation is constant and phosphatase activity is undetectable, implicating light chain kinase activation as the means of regulation. The specificity of the myosin kinases operating in vivo and in vitro was explored using phosphoamino acid and chymotryptic phosphopeptide analysis. The light chain is phosphorylated on serine both in vivo and in vitro, and phosphopeptide maps of the light chain phosphorylated in vivo and in vitro are indistinguishable. In the case of the heavy chain, both serine and threonine are phosphorylated in vivo and in vitro, although the cAMP-stimulated increases in phosphorylation occur primarily on threonine. Phosphopeptide maps of the heavy chain show that the peptides phosphorylated in vitro represent a major subset of those phosphorylated in vivo. The kinetics of the transient increases in myosin phosphorylation rates observed in vitro can be predicted quantitatively from the in vivo myosin phosphorylation data assuming that there is a constant phosphatase activity.  相似文献   

9.
J L Smith  L A Silveira    J A Spudich 《The EMBO journal》1996,15(22):6075-6083
Phosphorylation of the regulatory light chain is an important mechanism for the activation of myosin in non-muscle cells. Unlike most myosin light chain kinases (MLCKs), MLCK-A from Dictyostelium is not activated by Ca2+/calmodulin. Autophosphorylation increases activity, but only to a low level, suggesting that there is an additional activation mechanism. Here, we show that MLCK-A is autophosphorylated on Thr289, which is C-terminal to the catalytic domain. Phosphorylation of MLCK-A increases in response to concanavalin A (conA) treatment of cells, which was previously shown to activate MLCK-A. However, a mutant kinase with an alanine at position 289 (T289A) is also phosphorylated in vivo, indicating that there is an additional phosphorylated residue. Based on comparisons with other protein kinases, we tested whether phosphorylation of Thr166 drives activation of MLCK-A. Our data indicate that phosphorylation of Thr289 occurs in vivo, but is not associated with conA-induced activation, whereas phosphorylation of Thr166 by some as yet unidentified kinase is associated with activation. Replacement of Thrl66 with glutamate results in a 12-fold increase in activity as compared with the wild-type enzyme, supporting the idea that phosphorylation of Thr166 increases MLCK-A activity.  相似文献   

10.
The actin-dependent ATPase activity of Dictyostelium myosin II filaments is regulated by phosphorylation of the regulatory light chain. Four deletion mutant myosins which lack different parts of subfragment 2 (S2) showed phosphorylation-independent elevations in their activities. Phosphorylation-independent elevation in the activity was also achieved by a double point mutation to replace conserved Glu932 and Glu933 in S2 with Lys. These results suggested that inhibitory interactions involving the head and S2 are required for efficient regulation. Regulation of wild-type myosin was not affected by copolymerization with a S2 deletion mutant myosin in the same filaments. Furthermore, the activity linearly correlated with the fraction of phosphorylated molecules in wild-type filaments. These latter two results suggest that the inhibitory head-tail interactions are primarily intramolecular.  相似文献   

11.
1. The Ca2(+)-activated and Mg2+ actin-activated myosin ATPase activities of flightless mfd- mutant Drosophila flight muscle myosin were one-half and one-third of those of the wild-type fly muscle myosin, respectively. 2. In the two-dimensional gel electrophoresis, the spots corresponding to phosphorylated myosin light chains, Lfl and Ltl, were hardly detected in mfd- mutant myosin. 3. These results support not only the conclusion that phosphorylation of myosin light chains regulates Drosophila myosin ATPase activity but also the assumption that the phosphorylation of myosin light chains is directly involved in flight function of the Drosophila fly.  相似文献   

12.
Chymotrypsin cleaves Dictyostelium myosin in half, splitting the heavy chain (210,000 daltons) into two fragments of 105,000 daltons each. One of the two major fragments is soluble at low ionic strength and has a native molecular weight of 130,000. As judged by SDS polyacrylamide gel electrophoresis, this soluble fragment consists of the two intact myosin light chains of 18,000 and 16,000 daltons and a 105,000-dalton polypeptide derived from the myosin heavy chain. The soluble fragment retains actin-activated ATPase activity and the ability to bind to actin in an ATP-dissociable fashion. The maximal velocity of the actin- activated ATPase activity of the soluble fragment is 80% of that of uncleaved myosin, although its apparent Km for actin is 12-fold greater than that of myosin. In addition to the major soluble 105,000-dalton fragment discussed above, chymotryptic cleavage of the Dictyostelium myosin also generates fragments that are insoluble at low ionic strength. The major insoluble fragment is 105,000 daltons on an SDS polyacrylamide gel and forms thick filaments that are devoid of myosin heads. A less prevalent insoluble fragment has a molecular weight of 83,000 and is probably a subfragment of the insoluble 105,000-dalton fragment. The heavy chain of myosin is phosphorylated in vivo and the phosphorylation site has been localized to the insoluble fragments, which derive from the tail portion of the myosin molecule.  相似文献   

13.
Like other vertebrate nonmuscle myosins, thymus myosin contains two phosphorylatable light chains. Phosphorylation of these light chains regulates the actin-activated ATPase of this myosin. The time courses for the phosphorylation of both monomeric and filamentous thymus myosin by gizzard myosin light chain kinase fitted single exponentials to greater than 85% phosphorylation. This indicates that the two heads of thymus myosin are phosphorylated at the same rate and suggests that these phosphorylations are random processes. The actin-activated ATPases of thymus myosins with different levels of light chain phosphorylation were also determined. A linear relationship was obtained between the extent of light chain phosphorylation and stimulation of the actin-activated ATPase. Since thymus myosin appears to be phosphorylated randomly, this linear relationship indicates that phosphorylation of one head of thymus myosin stimulates the actin-activated ATPase of that head independently of the phosphorylation of the second head. The apparent random phosphorylation of thymus myosin light chains contrasts with the reported ordered phosphorylation of the light chains of filamentous smooth (gizzard) muscle myosin. Also, while the actin-activated ATPases of the two heads of thymus myosin are regulated independently, both heads of gizzard myosin must be phosphorylated before the ATPase of either head is activated by actin.  相似文献   

14.
Myosin was purified from rabbit alveolar macrophages in a form that could not be activated by actin. This myosin could be phosphorylated by an endogenous myosin light chain kinase, up to 2 mol of phosphate being incorporated/mol of myosin. The site phosphorylated was located on the 20,000-dalton myosin light chain. Phosphorylation of macrophage myosin was found to be necessary for actin activation of myosin ATPase activity. Moreover, the actin-activated ATPase activity was found to vary directly with the extent of myosin phosphorylation, maximal phosphorylation (2 mol of Pi/mol of myosin) resulting in an actin-activated MgATPase activity of approximately 200 nmol of Pi/mg of myosin/min at 37 degrees C. These results establish that phosphyoyration of the 20,000-dalton light chain of myosin is sufficient to regulate the actin-activated ATPase activity of macrophage myosin.  相似文献   

15.
In Dictyostelium cells, myosin II is found as cytosolic nonassembled monomers and cytoskeletal bipolar filaments. It is thought that the phosphorylation state of three threonine residues in the tail of myosin II heavy chain regulates the molecular motor's assembly state and localization. Phosphorylation of the myosin heavy chain at threonine residues 1823, 1833 and 2029 is responsible for maintaining myosin in the nonassembled state, and subsequent dephosphorylation of these residues is a prerequisite for assembly into the cytoskeleton. We report here the characterization of myosin heavy-chain phosphatase activities in Dictyostelium utilizing myosin II phosphorylated by myosin heavy-chain kinase A as a substrate. One of the myosin heavy-chain phosphatase activities was identified as protein phosphatase 2A and the purified holoenzyme was composed of a 37-kDa catalytic subunit, a 65-kDa A subunit and a 55-kDa B subunit. The protein phosphatase 2A holoenzyme displays two orders of magnitude higher activity towards myosin phosphorylated on the heavy chains than it does towards myosin phosphorylated on the regulatory light chains, consistent with a role in the control of filament assembly. The purified myosin heavy-chain phosphatase activity promotes bipolar filament assembly in vitro via dephosphorylation of the myosin heavy chain. This system should provide a valuable model for studying the regulation and localization of protein phosphatase 2A in the context of cytoskeletal reorganization.  相似文献   

16.
在有Ca2+和钙调蛋白存在时,肌球蛋白轻链激酶催化肌球蛋白磷酸化,促使肌动蛋白激活的肌球蛋白(肌动球蛋白)Mg2+-ATP酶活性显著增加.然而,肌球蛋白磷酸化水平与Mg2+-ATP酶之间的关系是非线性的,原肌球蛋白可以进一步增加Mg2+-ATP酶的活性,但仍不改变它们之间的非线性关系.肌球蛋白轻链激酶的合成肽抑制剂抑制了肌球蛋白磷酸化和Mg2+-ATP酶活性,并导致平滑肌去膜肌纤维的等长收缩张力与速度的降低.结果提示肌球蛋白轻链激酶参与脊椎动物平滑肌收缩的调节过程,肌球蛋白轻链磷酸化作用会引起平滑肌收缩  相似文献   

17.
Myosin II heavy chain (MHC)-specific protein kinase C (MHC-PKC) isolated from the ameba, Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cAMP (Abu- Elneel et al. 1996. J. Biol. Chem. 271:977- 984). Recent studies have indicated that cAMP-induced cGMP accumulation plays a role in the regulation of myosin II phosphorylation and localization (Liu, G., and P. Newell. 1991. J. Cell. Sci. 98: 483-490). This report describes the roles of cAMP and cGMP in the regulation of MHC-PKC membrane association, phosphorylation, and activity (hereafter termed MHC-PKC activities). cAMP stimulation of Dictyostelium cells resulted in translocation of MHC-PKC from the cytosol to the membrane fraction, as well as increasing in MHC-PKC phosphorylation and in its kinase activity. We present evidence that MHC is phosphorylated by MHC-PKC in the cell cortex which leads to myosin II dissociation from the cytoskeleton. Use of Dictyostelium mutants that exhibit aberrant cAMP- induced increases in cGMP accumulation revealed that MHC-PKC activities are regulated by cGMP. Dictyostelium streamer F mutant (stmF), which produces a prolonged peak of cGMP accumulation upon cAMP stimulation, exhibits prolonged increases in MHC-PKC activities. In contrast, Dictyostelium KI-10 mutant that lacks the normal cAMP-induced cGMP response, or KI-4 mutant that shows nearly normal cAMP-induced cGMP response but has aberrant cGMP binding activity, show no changes in MHC- PKC activities. We provide evidence that cGMP may affect MHC-PKC activities via the activation of cGMP-dependent protein kinase which, in turn, phosphorylates MHC-PKC. The results presented here indicate that cAMP-induced cGMP accumulation regulates myosin II phosphorylation and localization via the regulation of MHC-PKC.  相似文献   

18.
Dictyostelium responds to hyperosmotic stress of 400 mOsm by a rapid reduction of its cell volume to 50%. The reduced cell volume is maintained as long as these osmotic conditions prevail. Dictyostelium does not accumulate compatible osmolytes to counteract the osmotic pressure applied. Using two-dimensional gel electrophoresis, we demonstrate that during the osmotic shock the protein pattern remains unaltered in whole-cell extracts. However, when cells were fractionated into membrane and cytoskeletal fractions, alterations of specific proteins could be demonstrated. In the crude membrane fraction, a 3-fold increase in the amount of protein was measured upon hyperosmotic stress. In the cytoskeletal fraction, the proteins DdLIM and the regulatory myosin light chain (RMLC) were shown to be regulated in the osmotic stress response. The elongation factors eEF1alpha (ABP50) and eEF1beta were found to increase in the cytoskeletal fraction, suggesting a translational arrest upon hyperosmotic stress. Furthermore, the two main components of the cytoskeleton, actin and myosin II, are phosphorylated as a consequence of the osmotic shock, with a tyrosine residue as the phosphorylation site on actin and three threonines in the case of the myosin II heavy chain.  相似文献   

19.
Directed cell migration occurs in response to extracellular cues. Following stimulation of a cell with chemoattractant, a significant rearrangement of the actin cytoskeleton is mediated by intracellular signaling pathways and results in polarization of the cell and movement via pseudopod extension. Amoeboid myosin Is play a critical role in regulating pseudopod formation in Dictyostelium, and their activity is activated by heavy chain phosphorylation. The effect of chemotactic stimulation on the in vivo phosphorylation level of a Dictyostelium myosin I, myoB, was tested. The myoB heavy chain is phosphorylated in vivo on serine 322 (the myosin TEDS rule phosphorylation site) in chemotactically competent cells. The level of myoB phosphorylation increases following stimulation of starving cells with the chemoattractant cAMP. A 3-fold peak increase in the level of phosphorylation is observed at 60 s following stimulation, a time at which the Dictyostelium cell actively extends pseudopodia. These findings suggest that chemotactic stimulation results in increased myoB activity via heavy chain phosphorylation and contributes to the global extension of pseudopodia that occurs prior to polarization and directed motility.  相似文献   

20.
In this study, we examined the activation mechanism of Dictyostelium myosin light chain kinase A (MLCK-A) using constitutively active Ca2+/calmodulin-dependent protein kinase kinase as a surrogate MLCK-A kinase. MLCK-A was phosphorylated at Thr166 by constitutively active Ca2+/calmodulin-dependent protein kinase kinase, resulting in an approximately 140-fold increase in catalytic activity, using intact Dictyostelium myosin II. Recombinant Dictyostelium myosin II regulatory light chain and Kemptamide were also readily phosphorylated by activated MLCK-A. Mass spectrometry analysis revealed that MLCK-A expressed by Escherichia coli was autophosphorylated at Thr289 and that, subsequent to Thr166 phosphorylation, MLCK-A also underwent a slow rate of autophosphorylation at multiple Ser residues. Using site-directed mutagenesis, we show that autophosphorylation at Thr289 is required for efficient phosphorylation and activation by an upstream kinase. By performing enzyme kinetics analysis on a series of MLCK-A truncation mutants, we found that residues 283-288 function as an autoinhibitory domain and that autoinhibition is fully relieved by Thr166 phosphorylation. Simple removal of this region resulted in a significant increase in the kcat of MLCK-A; however, it did not generate maximum enzymatic activity. Together with the results of our kinetic analysis of the enzymes, these findings demonstrate that Thr166 phosphorylation of MLCK-A by an upstream kinase subsequent to autophosphorylation at Thr289 results in generation of maximum MLCK-A activity through both release of an autoinhibitory domain from its catalytic core and a further increase (15-19-fold) in the kcat of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号