首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G protein-gated inwardly rectifying potassium (GIRK/Kir3) channels regulate cellular excitability and neurotransmission. In this study, we used biochemical and morphological techniques to analyze the cellular and subcellular distributions of GIRK channel subunits, as well as their interactions, in the mouse cerebellum. We found that GIRK1, GIRK2, and GIRK3 subunits co-precipitated with one another in the cerebellum and that GIRK subunit ablation was correlated with reduced expression levels of residual subunits. Using quantitative RT-PCR and immunohistochemical approaches, we found that GIRK subunits exhibit overlapping but distinct expression patterns in various cerebellar neuron subtypes. GIRK1 and GIRK2 exhibited the most widespread and robust labeling in the cerebellum, with labeling particularly prominent in granule cells. A high degree of molecular diversity in the cerebellar GIRK channel repertoire is suggested by labeling seen in less abundant neuron populations, including Purkinje neurons (GIRK1/GIRK2/GIRK3), basket cells (GIRK1/GIRK3), Golgi cells (GIRK2/GIRK4), stellate cells (GIRK3), and unipolar brush cells (GIRK2/GIRK3). Double-labeling immunofluorescence and electron microscopies showed that GIRK subunits were mainly found at post-synaptic sites. Altogether, our data support the existence of rich GIRK molecular and cellular diversity, and provide a necessary framework for functional studies aimed at delineating the contribution of GIRK channels to synaptic inhibition in the cerebellum.  相似文献   

2.
He G  Hu J  Ma X  Li M  Wang H  Meng J  Jia M  Luo X 《Journal of neurochemistry》2008,106(4):1710-1719
Histamine (HA) was found to be present in the sympathetic nerve terminals of guinea pig hearts and vasa deferentia in our previous study; however, little is known about the functions of this neurogenic HA. In this study, we used guinea pig vasa deferentia to investigate the pre- and post-synaptic functions of HA evoked by different frequencies of sympathetic nerve stimulation. We found that sympathetic nerve stimulation could evoke HA release, which was independent to mast cell degranulator compound 48/80 and mast cell stabilizer cromolyn, but was highly sensitive to Na+ channel blocker tetrodotoxin and chemical sympathectomy with 6-hydroxydopamine. The neurogenically released HA evoked by 12.5 Hz of nerve stimulation activated only pre-synaptic H3 receptors and mediated pre-synaptic inhibitory effects, while under 25 or 50 Hz stimulation condition, HA simultaneously activated both pre-synaptic H3 receptors and post-synaptic H1 receptors. However, the direct contractile responses evoked by sympathetic HA via H1 receptors were observed at 50 Hz. HA release and HA-mediated contractile responses upon sympathetic nerve stimulation were significantly inhibited by pre-treatment of histidine decarboxylase inhibitor α-fluoromethylhistidine. Furthermore, application of exogenous HA could mimic these pre- and post-synaptic effects. Our findings indicate that HA in sympathetic neurons acts as a neurotransmitter and its functions vary from pre-synaptic inhibition, to post-synaptic facilitation, to direct post-synaptic contractile responses according to sympathetic nerve stimulation frequencies.  相似文献   

3.
Abstract: GABAB and dopamine D2 receptors, both of which acutely inhibit adenylyl cyclase and high voltage-activated Ca2+ channels (HVA-CCs), are found in high levels in the melanotrope cells of the pituitary intermediate lobe. Chronic D2 receptor agonist application in vitro has been reported to result in inhibition of HVA-CC activity by down-regulation. Here we report that chronic GABAB, but not GABAA, agonist treatment also resulted in HVA-CC inhibition. Two GABAB receptor variants have been cloned and shown to inhibit adenylyl cyclase in HEK-293 cells. We have constructed an antisense deoxynucleotide knockdown-type probe that is complementary to 18 bp from the point at which the two sequences first become homologous. Chronic coincubation with baclofen and GABAB antisense nucleotide completely eliminated the inhibition of the channels by baclofen alone but had no reversing effect on HVA-CC inhibition by the D2 agonist quinpirole. A scrambled, missense nucleotide also had no reversing effect. Incubation with a D2 antisense knockdown probe eliminated the ability of a D2 agonist to inhibit the channels but had no effect on baclofen blockade. These results show the existence an R1a/R1b type of GABAB receptor, which, like the D2 receptor, is coupled to chronic HVA-CC inhibition in melanotropes.  相似文献   

4.
Abstract: The coexpression of sulphonylurea binding sites and ATP-sensitive K+ (KATP) channels was examined in the rat motor cortex, an area of the CNS exhibiting a high density of sulphonylurea binding. These channels were not detected on neuronal cell bodies, but sulphonylurea-sensitive KATP channels and charybdotoxin-sensitive, large-conductance calcium-activated K+ BKCa channels were detected by patch clamping of fused nerve terminals from the motor cortex. Subcellular fractionation revealed that high-affinity sulphonylurea binding sites were enriched in the nerve terminal fraction, whereas glibenclamide increased calcium-independent glutamate efflux from isolated nerve terminals. It is concluded that neuronal sulphonylurea receptors and KATP channels are functionally linked in the motor cortex and that they are both selectively expressed in nerve terminals, where the KATP channel may serve to limit glutamate release under conditions of metabolic stress.  相似文献   

5.
Abstract: Previously, we have shown a significant increase in number of GABAB receptor binding sites in neocortex and thalamus of lethargic ( lh/lh ) mice, a mutant strain exhibiting absence seizures. This study was performed to test our hypothesis that presynaptic GABAB receptors would inhibit [3H]GABA release to a greater degree in lh/lh mice compared with their nonepileptic littermates (designated +/+). Synaptosomes isolated from neocortex and thalamus of age-matched male lh/lh and +/+ mice were similar in uptake of [3H]GABA. In the neocortical preparation, baclofen dose-dependently inhibited [3H]GABA release evoked by 12 m M KCl, an effect mediated by GABAB receptors. The maximal inhibition ( I max) value was significantly greater (80%) in lh/lh than +/+ mice, whereas the IC50 (3 µ M ) was unchanged. In the thalamic preparation, the effect of baclofen (50 µ M ) was 58% less robust in lh/lh mice. Other effects mediated by GABAB receptors (inhibitions in Ca2+ uptake and cyclic AMP formation) were also significantly reduced in thalamic synaptosomes from lh/lh mice. These data suggest a greater presynaptic GABAB receptor-mediated effect in neocortex and a reduced effect in thalamic nuclei of lh/lh mice. It is possible that selective effects of presynaptic GABAB receptors on GABA release in neocortex and thalamic nuclei of lh/lh mice may contribute to mechanisms underlying absence seizures.  相似文献   

6.
Expression of GABA Receptor ρ Subunits in Rat Brain   总被引:2,自引:1,他引:1  
Abstract: The GABA receptor ρ1, ρ2, and ρ3 subunits are expressed in the retina where they form bicuculline-insensitive GABAC receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of ρ subunits in rat brains. In situ hybridization allowed us to detect ρ-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABAC receptors, ρ2 and ρ1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABAC receptors, ρ2 mRNA is enriched relative to ρ1 mRNA. These results suggest that both ρ1 and ρ2 subunits are necessary to form a functional GABAC receptor. The use of RT-PCR also showed that, except in the superior colliculus, ρ3 is expressed along with ρ1 and ρ2 subunits. We also raised an antibody against a peptide sequence unique to the ρ1 subunit. The use of this antibody on cerebellum revealed the rat ρ1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABAC receptor subunits to identified neurons paves the way for future electrophysiological studies.  相似文献   

7.
Abstract: Using a microdialysis method, we investigated the effects of the nipecotic acid-induced increase in content of endogenous GABA on in vivo release of histamine from the anterior hypothalamus (AHy) of urethane-anesthetized rats. Nipecotic acid (0.5 m M ), an inhibitor of GABA uptake, decreased histamine release to ∼60% of the basal level. This effect was partially antagonized by picrotoxin (0.1 m M ), an antagonist of GABAA receptors, or phaclofen (0.1 m M ), an antagonist of GABAB receptors. These results suggest that histamine release is modulated by endogenous GABA through both GABAA and GABAB receptors. When the tuberomammillary nucleus, where the cell bodies of the histaminergic neurons are localized, was stimulated electrically, the evoked release of histamine from the nerve terminals in the AHy was significantly enhanced by phaclofen, suggesting that GABAB receptors may be located on the histaminergic nerve terminals and modulate histamine release presynaptically. On the other hand, picrotoxin caused an increase in histamine release to ∼170% of the basal level, and this increase was diminished by coinfusion with d (−)-2-amino-5-phosphonopentanoic acid (0.1 m M ), an antagonist of NMDA receptors. Previously, we demonstrated tonic control of histamine release by glutamate mediated through NMDA receptors located on the histaminergic terminals in the AHy. These results suggest the possible localization of GABAA receptors on glutamatergic nerve terminals and that the receptors may regulate the basal release of histamine indirectly.  相似文献   

8.
J. Neurochem. (2012) 122, 1095-1107. ABSTRACT: Ca(2+) channel β subunits determine the maturation, biophysical properties and cell surface expression of high voltage-activated channels. Thus, we have analysed the expression, regional distribution and subcellular localization of the Ca(v) β subunit family in mice from birth to adulthood. In the hippocampus and cerebellum, Ca(v) β(1) , Ca(v) β(3) and Ca(v) β(4) protein levels increased with age, although there were marked region- and developmental stage-specific differences in their expression. Ca(v) β(1) was predominantly expressed in the strata oriens and radiatum of the hippocampus, and only weakly in the cerebellum. The Ca(v) β(3) subunit was mainly expressed in the strata radiatum and lucidum of the hippocampus and in the molecular layer of the cerebellum. During development, Ca(v) β(3) protein expression in the cerebellum peaked at postnatal days (P) 15 and 21, and had diminished drastically by P60, and in the hippocampus increased with age throughout all subfields. Ca(v) β(4) protein was detected throughout the cerebellum, particularly in the molecular layer, and in contrast to the other subunits, Ca(v) β(4) was mainly detected in the molecular layer and the hilus of the hippocampus. At the subcellular level, Ca(v) β(1) and Ca(v) β(3) were predominantly located post-synaptically in hippocampal pyramidal cells and cerebellar Purkinje cells. Ca(v) β(4) subunits were detected in the pre-synaptic and post-synaptic compartments of both regions, albeit more strongly at post-synaptic sites. These results shed new light on the developmental regulation and subcellular localization of Ca(v) β subunits, and their possible role in pre- and post-synaptic transmission.  相似文献   

9.
Abstract: GABA and the GABAB receptor agonist (−)-baclofen inhibited 4-aminopyridine (4AP)- and KCl-evoked, Ca2+-dependent glutamate release from rat cerebrocortical synaptosomes. The GABAB receptor antagonist CGP 35348, prevented this inhibition of glutamate release, but phaclofen had no effect. (−)-Baclofen-mediated inhibition of glutamate release was insensitive to 2 µg/ml pertussis toxin. As determined by examining the mechanism of GABAB receptor modulation of glutamate release, (−)-baclofen caused a significant reduction in 4AP-evoked Ca2+ influx into synaptosomes. The agonist did not alter the resting synaptosomal membrane potential or 4AP-mediated depolarization; thus, the inhibition of Ca2+ influx could not be attributed to GABAB receptor activation causing a decrease in synaptosomal excitability. Ionomycin-mediated glutamate release was not affected by (−)-baclofen, indicating that GABAB receptors in this preparation are not coupled directly to the exocytotic machinery. Instead, the data invoke a direct coupling of GABAB receptors to voltage-dependent Ca2+ channels linked to glutamate release. This coupling was subject to regulation by protein kinase C (PKC), because (−)-baclofen-mediated inhibition of 4AP-evoked glutamate release was reversed when PKC was stimulated with phorbol ester. This may therefore represent a mechanism by which inhibitory and facilitatory presynaptic receptor inputs interplay to fine-tune transmitter release.  相似文献   

10.
Excitatory synaptic transmission is inhibited by G protein coupled receptors, including the adenosine A1, GABAB, and metabotropic glutamate receptor 7. These receptors are present in nerve terminals where they reduce the release of glutamate through activating signaling pathways negatively coupled to Ca2+ channels and adenylyl cyclase. However, it is not clear whether these receptors operate in distinct subpopulations of nerve terminals or if they are co-expressed in the same nerve terminals, despite the functional consequences that such distributions may have on synaptic transmission. Applying Ca2+ imaging and immunocytochemistry, we show that these three G protein coupled receptors coexist in a subpopulation of cerebrocortical nerve terminals. The three receptors share an intracellular signaling pathway through which their inhibitory responses are integrated and coactivation of these receptors produced an integrated response. Indeed, this response was highly variable, from a synergistic response at subthreshold agonist concentrations to an occluded response at high agonist concentrations. The presence of multiple receptors in a nerve terminal could be responsible for the physiological effects of neurotransmitter spillover from neighboring synapses or alternatively, the co-release of transmitters by the same nerve terminal.  相似文献   

11.
ATP-sensitive K+ (KATP) channels that are gated by intracellular ATP/ADP concentrations are a unique subtype of potassium channels and play an essential role in coupling intracellular metabolic events to electrical activity. Opening of KATP channels during energy deficits in the CNS induces efflux of potassium ions and in turn hyperpolarizes neurons. Thus, activation of KATP channels is thought to be able to counteract excitatory insults and protect against neuronal death. In this review, we bring together recent studies about what kinds of molecules are needed to build and regulate arrays of KATP channel functions in the CNS neurons. We propose a model to explain how KATP channel activation regulates glutamate release from the pre-synaptic terminals and how this regulation protects against ischemic neuronal injury and epilepsy.  相似文献   

12.
G protein-coupled inwardly rectifying K(+) channels (GIRK or Kir3) form functional heterotetramers gated by Gbetagamma subunits. GIRK channels are critical for functions as diverse as heart rate modulation and neuronal post-synaptic inhibition. GIRK5 (Kir3.5) is the oocyte homologue of the mammalian GIRK subunits that conform the K(ACh) channel. It has been claimed that even when the oocytes express GIRK5 proteins they do not form functional channels. However, the GIRK5 gene shows three initiation sites that suggest the existence of three isoforms. In a previous work we demonstrated the functionality of homomultimers of the shortest isoform overexpressed in the own oocytes. Remarkably, the basal GIRK5-Delta25 inward currents were not coupled to the activation of a G-protein receptor in the oocytes. These results encouraged us to study this channel in another expression system. In this work we show that Sf21 insect cells can be successfully transfected with this channel. GIRK5-Delta25 homomultimers produce time-dependent inward currents only with GTPgammaS in the recording pipette. Therefore, alternative modes of stimulus input to heterotrimeric G-proteins should be present in the oocytes to account for these results.  相似文献   

13.
Abstract: Autoradiographic studies have shown that σ receptors are enriched in the locus coeruleus, the origin of noradrenergic projections to the cerebellum, as well as in the Purkinje, molecular, and granular layers and the interpositus cerebellar nucleus of the cerebellum itself. In contrast, the cerebellum is relatively poor in phencyclidine (PCP) binding sites, which have been historically confused with σ sites. The high ratio of σ to PCP receptors in cerebellum is advantageous for discriminating σ-mediated physiological effects. σ agonists and antagonists have been shown to regulate N -methyl- d -aspartate (NMDA)-stimulated norepinephrine release in hippocampus, which is innervated by locus coeruleus projections. We now report that σ drugs also regulate norepinephrine release from cerebellum. In contrast to findings in the hippocampus, where regulation is via σ1 and σ2 receptors, σ-mediated regulation in cerebellum seems to be primarily via σ1 receptors. In radioligand binding studies, we find that σ receptors primarily of the σ1 type are present in the cerebellum. We further report that binding to σ receptors in cerebellum is not affected by the addition of NMDA or glycine or by the presence of NMDA antagonists, suggesting that σ receptors are not located within the NMDA-operated cation channel in this brain region.  相似文献   

14.
Little is known concerning coupling of cerebral GABAB receptors to G protein subtypes, and the influence of positive allosteric modulators (PAMs) has not been evaluated. These questions were addressed by an antibody-capture/scintillation proximity assay strategy. GABA concentration-dependently enhanced the magnitude of [35S]GTPγS binding to Gαo and, less markedly, Gαi1/3 in cortex, whereas Gq and Gs/olf were unaffected. ( R )-baclofen and SKF97581 likewise activated Gαo and Gαi1/3, expressing their actions more potently than GABA. Similar findings were acquired in hippocampus and cerebellum, and the GABAB antagonist, CGP55845A, abolished agonist-induced activation of Gαo and Gαi1/3 in all structures. The PAMs, GS39783, CGP7930 and CGP13501, inactive alone, enhanced efficacy and potency of agonist-induced [35S]GTPγS binding to Gαo in all regions, actions abolished by CGP55845A. In contrast, they did not modify efficacies at Gαi1/3. Similarly, in human embryonic kidney cells expressing GABAB(1a+2) or GABAB(1b+2) receptors, allosteric modulators did not detectably enhance efficacy of GABA at Gαi1/3, though they increased its potency. To summarise, GABAB receptors coupled both to Gαo and to Gαi, but not Gq and Gs/olf, in rat brain. PAMs more markedly enhanced efficacy of coupling to Go versus Gi1/3. It will be of interest to confirm these observations employing complementary techniques and to evaluate their potential therapeutic significance.  相似文献   

15.
G-protein-coupled inwardly rectifying K(+) (GIRK; Kir3.x) channels are the primary effectors of numerous G-protein-coupled receptors. GIRK channels decrease cellular excitability by hyperpolarizing the membrane potential in cardiac cells, neurons, and secretory cells. Although direct regulation of GIRKs by the heterotrimeric G-protein subunit Gbetagamma has been extensively studied, little is known about the number of Gbetagamma binding sites per channel. Here we demonstrate that purified GIRK (Kir 3.x) tetramers can be chemically cross-linked to exogenously purified Gbetagamma subunits. The observed laddering pattern of Gbetagamma attachment to GIRK4 homotetramers was consistent with the binding of one, two, three, or four Gbetagamma molecules per channel tetramer. The fraction of channels chemically cross-linked to four Gbetagamma molecules increased with increasing Gbetagamma concentrations and approached saturation. These results suggest that GIRK tetrameric channels have four Gbetagamma binding sites. Thus, GIRK (Kir 3.x) channels, like the distantly related cyclic nucleotide-gated channels, are tetramers and exhibit a 1:1 subunit/ligand binding stoichiometry.  相似文献   

16.
Abstract: 5-Hydroxytryptamine3 (5-HT3) receptors are the only known monoamine receptors mediating fast excitatory responses in mammalian neurons. Their primary structure as well as their electrophysiological and pharmacological properties show a phylogenetic relation to nicotinic acetylcholine, GABAA, and glycine receptors. As a prototypical member of this gene superfamily, we investigated the membrane topology of functional homomeric 5-HT3 receptors by using epitope tagging of the channel subunits expressed in heterologous systems. Visualization of 5-HT3 receptors in transfected COS-7 cells, either in western blot (molecular mass 61.2 ± 0.8 kDa) or in situ, was performed with previously characterized antibodies recognizing artificial epitopes as well as with anti-fusion protein antibodies directed against a wild-type receptor intracellular domain. The extracellular location of the distal C-terminal tagged domain demonstrates the presence of a fourth transmembrane domain in 5-HT3 serotonin-gated channels. In this region, the significant homology between members of this class of neurotransmitter-gated channels suggests strongly that they have a common transmembrane organization basically different from glutamate-gated and ATP-gated channels.  相似文献   

17.
Disruption of neuronal signaling by soluble β-amyloid has been implicated in deficits in short-term recall in the early stages of Alzheimer's disease. One potential target for β-amyloid is the synapse, with evidence for differential interaction with both pre- and post-synaptic elements. Our previous work revealed an agonist-like action of soluble β-amyloid (pM to nM) on isolated pre-synaptic terminals to increase [Ca2+]i, with apparent involvement of pre-synaptic nicotinic receptors. To directly establish the role of nicotinic receptors in pre-synaptic Ca2+ regulation, we investigated the pre-synaptic action of β-amyloid on terminals isolated from mice harboring either β2 or α7 nicotinic receptor null mutants (knockouts). Average pre-synaptic responses to β-amyloid in hippocampal terminals of α7 knockout mice were unchanged, whereas responses in hippocampal terminals from β2 knockout mice were strongly attenuated. In contrast, pre-synaptic responses to soluble β-amyloid were strongly attenuated in cortical terminals from α7 knockout mice but were moderately attenuated in cortical terminals from β2 knockout mice. The latter responses, having distinct kinetics, were completely blocked by α-bungarotoxin. The use of receptor null mutants thus permitted direct demonstration of the involvement of specific nicotinic receptors in pre-synaptic Ca2+ regulation by soluble β-amyloid, and also indicated differential neuromodulation by β-amyloid of synapses in hippocampus and cortex.  相似文献   

18.
Neuronal G protein‐gated inwardly rectifying potassium (GIRK) channels mediate the slow inhibitory effects of many neurotransmitters post‐synaptically. However, no evidence exists that supports that GIRK channels play any role in the inhibition of glutamate release by GABAB receptors. In this study, we show for the first time that GABAB receptors operate through two mechanisms in nerve terminals from the cerebral cortex. As shown previously, GABAB receptors reduces glutamate release and the Ca2+ influx mediated by N‐type Ca2+ channels in a mode insensitive to the GIRK channel blocker tertiapin‐Q and consistent with direct inhibition of this voltage‐gated Ca2+ channel. However, by means of weak stimulation protocols, we reveal that GABAB receptors also reduce glutamate release mediated by P/Q‐type Ca2+ channels, and that these responses are reversed by the GIRK channel blocker tertiapin‐Q. Consistent with the functional interaction between GABAB receptors and GIRK channels at nerve terminals we demonstrate by immunogold electron immunohistochemistry that pre‐synaptic boutons of asymmetric synapses co‐express GABAB receptors and GIRK channels, thus suggesting that the functional interaction of these two proteins, found at the post‐synaptic level, also occurs at glutamatergic nerve terminals.  相似文献   

19.
The existence of pre-synaptic auto- and hetero receptors which modulate neurotransmitter release is well documented. Emerging evidence show that in some cases these pre-synaptic receptors may also cross-talk with each other. The aim of the present work was to investigate whether acetylcholine receptors (nAChRs) and dopamine (DA) autoreceptors, which are both able to modulate DA release, functionally interact on the same nerve endings. We used rat and mouse nucleus accumbens synaptosomes pre-labeled with [3H]DA and exposed to nicotinic and dopaminergic receptor ligands. Both nicotinic agonists and 4-aminopyridine (4-AP) provoked [3H]DA release which was inhibited by quinpirole and blocked by sulpiride and raclopride. Both the inhibitory effect of quinpirole and the stimulatory effect of (−)nicotine did not change when the nAChRs or the DA receptors were desensitized. (−)Nicotine and 4-AP were able to stimulate [3H]DA overflow also in mouse synaptosomes and this overflow was partially inhibited by quinpirole. In the β2 knockout mice quinpirole was still able to inhibit the [3H]DA overflow elicited by 4-AP. To conclude: in rat and mouse the (−)nicotine evoked-release can be modulated by D2/D3 autoreceptors present on the DA terminals and nAChRs function is independent from D2/D3 autoreceptors which themselves may function independently from the activation of nAChRs.  相似文献   

20.
Abstract: GTP and GDP decreased the saturable binding of [3H]baclofen or [3H]γ-aminobutyric acid ([3H]GABA) to GABAB but not GABAA receptors whereas GMP displayed negligible activity. This effect was specific to guanyl nucleotides and was not mimicked by high concentrations of ATP. The inhibition of ligand binding was the result of a diminished receptor affinity with no change in receptor number. The use of a complete physiological saline solution rather than Tris buffer plus Ca2+ or Mg2+ increased the potency of GTP at the GABAB receptor. The results are discussed in relation to the effects of GABA and GTP on adenylate cyclase activity in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号