首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Activation of the proenzyme form of the malarial protease PfSUB-1 involves the autocatalytic cleavage of an Asp-Asn bond within the internal sequence motif (215)LVSADNIDIS(224). A synthetic decapeptide based on this sequence but with the N- and C-terminal residues replaced by cysteines (Ac-CVSADNIDIC-OH) was labeled with 5- or 6-isomers of iodoacetamidotetramethylrhodamine (IATR). The doubly labeled peptides have low fluorescence because of ground-state, noncovalent dimerization of the rhodamines. Cleavage of either peptide by recombinant PfSUB-1 results in dissociation of the rhodamine dimers, which abolishes the self-quenching and consequently leads to an approximately 30-fold increase in the fluorescence. This spectroscopic signal provides a continuous assay of proteolysis, enabling quantitative kinetic measurements to be made, and has also enabled the development of a fluorescence-based assay suitable for use in high-throughput screens for inhibitors of PfSUB-1. The structure of the rhodamine dimer in the 6-IATR-labeled peptide was shown by NMR to be a face-to-face stacking of the xanthene rings. Time-resolved fluorescence measurements suggest that the doubly labeled peptides exist in an equilibrium consisting of rhodamines involved in dimers (closed forms) and rhodamines not involved in dimers (open forms). These data also indicate that the rhodamine dimers fluoresce and that the associated lifetimes are subnanosecond.  相似文献   

2.
Zeolitic imidazolate framework‐8 (ZIF‐8) loading rhodamine‐B (ZIF‐8@rhodamine‐B) nanocomposites was proposed and used as ratiometric fluorescent sensor to detect copper(II) ion (Cu2+). Scanning electron microscopy, Fourier transform infrared spectroscopy, X‐ray powder diffraction, nitrogen adsorption/desorption isotherms and fluorescence emission spectroscopy were employed to characterize the ZIF‐8@rhodamine‐B nanocomposites. The results showed the rhodamine‐B was successfully assembled on ZIF‐8 based on the π‐π interaction and the hydrogen bond between the nitrogen atom of ZIF‐8 and –COOH of rhodamine‐B. The as‐obtained ZIF‐8@rhodamine‐B nanocomposites were octahedron with size about 150–200 nm, had good water dispersion, and exhibited the characteristic fluorescence emission of ZIF‐8 at 335 nm and rhodamine‐B at 575 nm. The Cu2+ could quench fluorescence of ZIF‐8 rather than rhodamine‐B. The ZIF‐8 not only acted as the template to assemble rhodamine‐B, but also was employed as the signal fluorescence together with the fluorescence of rhodamine‐B as the reference to construct a novel ratiometric fluorescent sensor to detect Cu2+. The resulted ZIF‐8@rhodamine‐B nanocomposite fluorescence probe showed good linear range (68.4 nM to 125 μM) with a low detection limit (22.8 nM) for Cu2+ combined with good sensitivity and selectivity. The work also provides a better way to design ratiometric fluorescent sensors from ZIF‐8 and other fluorescent molecules.  相似文献   

3.
Interactions of the peptides melittin and magainin with phospholipid vesicle membranes have been studied using fluorescence correlation spectroscopy. Molecular interactions of melittin and magainin with phospholipid membranes are performed in rhodamine-entrapped vesicles (REV) and in rhodamine-labelled phospholipid vesicles (RLV), which did not entrap free rhodamine inside. The results demonstrate that melittin makes channels into vesicle membranes since exposure of melittin to vesicles causes rhodamine release only from REV but not from RLV. It is obvious that rhodamine can not be released from RLV because the inside of RLV is free of dye molecules. In contrast, magainin breaks vesicles since addition of magainin to vesicles results in rhodamine release from both REV and RLV. As the inside of RLV is free of rhodamine, the appearance of rhodamine in solution confirms that these vesicles are broken into rhodamine-labelled phospholipid fragments after addition of magainin. This study is of pharmaceutical significance since it will provide insights that fluorescence correlation spectroscopy can be used as a rapid protocol to test incorporation and release of drugs by vesicles.  相似文献   

4.
Flow cytometric detection of mitochondrial H2S was achieved with propargylic esters of rhodamine B which selectively react with H2S via cationic rhodamine-moiety directed thiolysis of the propargylic esters to give nonfluorescent rhodamine thio-spirolactone.  相似文献   

5.
Highly active fluorescent compounds having kappa opioid activity were identified following the screening in a kappa-specific radioligand binding assay of a positional scanning tetrapeptide combinatorial library in which every tetrapeptide was fluorescently labeled. Lissamine rhodamine B sulfonyl chloride was coupled to the N terminal of a mixture-based tetrapeptide positional scanning library made up of over 7.3 million tetrapeptides. Upon determination of the most active mixtures for each position of the library in the kappa binding assay, individual rhodamine labeled tetrapeptides were then synthesized and tested to determine their activities. Eight individual rhodamine labeled peptides were identified that were specific for the kappa opioid receptor, having binding affinities ranging from 5-20 nM. These peptides were poor inhibitors at the mu and delta receptors (K(i)>5,000 nM). Furthermore, neither rhodamine itself nor these same tetrapeptides lacking the N-terminal rhodamine had any significant activity at the kappa receptor, indicating that both the tetrapeptide sequence and the rhodamine moiety are required for receptor binding. This study has demonstrated that novel fluorescent compounds with intrinsic activity can be identified through the use of combinatorial chemistry.  相似文献   

6.
Rhodamine 123 accumulates in the mitochondria of living cells and exhibits selective anticarcinoma activity. The biochemical basis of toxicity was investigated by testing the effect of the dye on isolated rat liver mitochondria. Much lower concentrations of rhodamine 123 were required to inhibit ADP-stimulated respiration and ATP synthesis in well-coupled energized mitochondria than were required to inhibit uncoupled respiration and uncoupler-stimulated ATP hydrolysis. The amount of rhodamine 123 associated with the mitochondria was several-fold greater under energized as compared to non-energized conditions, which may explain why coupled functions appeared to be more sensitive than uncoupled functions to inhibition at low concentrations of rhodamine 123. It was concluded that the site of rhodamine 123 inhibition is most likely the F0F1 ATPase complex and possibly electron transfer reactions as well.  相似文献   

7.
Neurotransmitters have been shown to coexist in cell bodies, but demonstrating their coexistence within nerve fibers and terminals has been more difficult. However, two recent reports outlined a simple light-microscopic method by which two neurotransmitters can be shown to coexist in fibers and terminals. The method was identical to that used for immunohistochemical localization of one antigen, except that two primary--secondary antibody systems labeled with two different fluorochromes were used simultaneously. In the present study, a method for the simultaneous visualization of serotonin and substance P was characterized. This method employed an antiserum to serotonin generated in goat in combination with a rabbit-generated antiserum to substance P. These antisera were visualized with secondary antisera raised in swine and conjugated with rhodamine and fluorescein respectively. Spinal cord sections stained by this protocol showed large numbers of fibers fluorescing both red and green. Many of them were in the ventral horn, fewer were around the central canal, and virtually none were in the dorsal horn. The apparent double labeling could be shown not to be the result of cross-reactivity among the antisera, of any inappropriate affinity among the antisera, of green fluorescence by rhodamine, or of red fluorescence by fluorescein. It is concluded that the method provides a simple technique for visualizing fibers and terminals in which serotonin and substance P coexist.  相似文献   

8.
It is well established that the plasma membrane exhibits an asymmetric distribution of lipids between the inner and outer leaflets of the lipid bilayer. Recent studies suggest that the asymmetric distribution changes locally and temporarily, accompanied by cellular events. However, available methods to detect lipid asymmetry lack spatio-temporal resolution. As a technique of potential use for real-time imaging of lipid asymmetry, we a novel method that utilizes fluorescence resonance energy transfer (FRET) between NBD-labeled phospholipids (donor) and extracellular rhodamine (acceptor). When cell apoptosis was induced by staurosporine, the fluorescence intensity of NBD-labeled phosphatidylserine decreased owing to FRET from NBD to rhodamine. This method provides a simple way to detect lipid asymmetry and may be useful for observing dynamic changes in asymmetric distribution of lipids.  相似文献   

9.
The mechanism of Congo red binding to amyloid protein was studied in order to establish which of two structural dye versions present in water solutions--unimolecular and supramolecular--represent its actual ligation form. Immunoglobulin L chain lambda of amyloidogenic nature, expressed by Congo red binding and easy gel formation, was used as the model amyloid protein. Congo red was coassembled with rhodamine B, designed to be a marker of the Congo red micellar organisation in complexation with protein. The particular suitability of rhodamine B for this role results from significant difference in its binding affinity to Congo red and to protein. It associates readily with Congo red, becoming incorporated into its micellar organisation, but as homogenous dye it shows an almost complete inability to bind to protein. In view of these properties, Congo red was used as a vehicle to draw rhodamine B into complexation with protein, at the same time supplying evidence of its supramolecular ligation form. The results show that both soluble amyloid precursor L chain and the derived gel material attach rhodamine B coassembled with Congo red but not the homogenous rhodamine B. Despite its dynamic, supramolecular character, Congo red participates in complexation with amyloid proteins as an integral ligand unit.  相似文献   

10.
α-Bungarotoxin is fluorescently labeled with tetramethyl rhodamine isothiocyanate and then fractionated on Sephadex G-25 and CM-Sephadex C-50 columns. The elution profile of the CM-Sephadex C-50 columns exhibits four distinct fluorescent peaks and a peak of unlabeled toxin. All four fluorescent peaks can fluorescently stain mouse diaphragm motor end plates. The most slowly eluting peak, Peak IV, has the highest quantum efficiency. Peak IV, which is identified as monolabeled tetramethyl rhodamine α-bungarotoxin, binds irreversibly to acetylcholine receptors on electroplax fragments and labels the fragments more intensely than Peaks I–III, which are identified as mixtures of multiply labeled tetramethyl rhodamine α-bungarotoxin.  相似文献   

11.
The effect of mercuric chloride on Madin-Darby Canine Kidney (MDCK) cells grown in culture was assayed by the mitochondrial-specific fluorescent probe, rhodamine 123. Treatment of cells with mercuric chloride resulted in a dissipation of rhodamine fluorescence from the mitochondria into the cytoplasm, followed by a release into the medium bathing the cells. Toxicity was assayed either by determining the proportion of cells with delocalized rhodamine fluorescence, or by measuring the rhodamine released from or retained in the cells. Quantifying the release or retention of rhodamine 123 is semi-automated and represents a highly sensitive method of using a vital fluorescent dye for in vitro toxicity analysis.  相似文献   

12.
Two kinds of rhodamine modified β-cyclodextrins (R-1 and R-2), which are coupled up ethylene diamine (EDA) and tetraethylene pentamine (TEPA) between Rh B and β-cyclodextrin, respectively, have been synthesized. R-1 and 2 work as a new fluorogenic probe for monitoring pH of Hela cells, and MTT of assay R-1, R-2, and rhodamine B indicate that less a cytotoxicity of those R-1 and R-2 than that of rhodamine B, where R-1 has much less one than that of R-2. The fluorogenetic probe capability of R-2 was recognized in an area of acidic area in living cell, which is lysosome.  相似文献   

13.
Rhodamine–silica nanocomposite bridged by a cleavable linker was used for highly sensitive nitrite detection via analyte triggered release of rhodamine from silica particles. Centrifugal removal of pristine nanoconjugate from the assay medium effectively decreased background signals in the supernatant whereas rhodamine unleashed from silica platform is retained in the supernatant, enabling facile detection of nitrite with an assay limit of 50 nM which is 400 folds lower than legislated maximum contaminant levels of nitrite in drinking water. Assays based on small molecular chemosensors are often compromised by their intrinsic fluorescence signals and low aqueous compatibility. The performance of water compatible rhodamine–silica nanocomposite suggests broad analytical potentials of centrifugal nanoparticulate systems with dyes conjugated via appropriate cleavable linkers.  相似文献   

14.
Lugo MR  Sharom FJ 《Biochemistry》2005,44(42):14020-14029
The P-glycoprotein efflux pump, an ABC superfamily member, can export a wide variety of hydrophobic drugs, natural products, and peptides from cells, powered by the energy of ATP hydrolysis. Transport substrates appear to first partition into the membrane and then interact with the protein within the cytoplasmic leaflet. Two drug binding sites within P-glycoprotein have been described which interact allosterically, the H-site (binds Hoechst 33342) and the R-site (binds rhodamine 123); however, the structural and functional relationship between the various binding sites appears complex. In this work, we have used fluorescence spectroscopic approaches to characterize the interaction of the transporter with LDS-751 and rhodamine 123, both of which are believed to bind to the putative R-site based on functional transport studies. By carrying out single and sequential dual fluorescence titrations of purified P-glycoprotein with the two substrates, we observed that bound LDS-751 interacted with bound rhodamine 123. Rhodamine 123 and LDS-751 showed a reciprocal negative interaction, each reducing the binding affinity of the other by 5-fold, indicating that the two compounds were simultaneously bound to the protein to form a ternary complex. Fitting of the dependence of the apparent Kd for LDS-751 binding on rhodamine 123 concentration suggested that the two compounds interacted noncompetitively. We conclude that the two-site drug binding model for P-glycoprotein requires modification. The putative R-site appears large enough to accommodate two compounds simultaneously. The locations where LDS-751 and rhodamine 123 bind are likely adjacent to each other, possibly overlapping, and may be within a hydrophobic pocket.  相似文献   

15.
A 170,000-Da glycoprotein (P170 multidrug transporter) becomes specifically labeled in multidrug-resistant human KB carcinoma cells by the photolabile lipophilic membrane probe 5-[125I]iodonaphthalene-1-azide ([125I]INA) when photoactivation of the probe is triggered by energy transfer from intracellular doxorubicin or rhodamine 123. In contrast, in drug-sensitive cells, drug-induced specific labeling of membrane proteins with [125I]INA was not observed. Instead, multiple membrane proteins became labeled in a nonspecific manner. This phenomenon of drug-induced specific labeling of P170 by [125I]INA is observed only in living cells, but not in purified membrane vesicles or lysed cells. It is generated by doxorubicin and rhodamine 123, drugs that are chromophores and to which the cells exhibit resistance; but it is not observed with other drugs or dyes. Verapamil, a calcium channel blocker which reverses resistance to doxorubicin, also abolishes doxorubicin-induced specific [125I]INA labeling of P170. These results reveal that a specific interaction between P170 and doxorubicin takes place in living cells and demonstrate that P170 is directly involved in the mechanism of drug resistance in vivo. They also provide a possible means to label functional domains in the multidrug transporter. The results demonstrate that photosensitized [125I]INA labeling is a technique which provides sufficient spatial and time resolution to detect specific intracellular interactions between chromophores and proteins in vivo.  相似文献   

16.
Lipophilic cations, such as rhodamine 123, have selective anticarcinoma activity both in epithelial-derived tumor cells and in tumor cells injected into mice. The mechanism by which rhodamine 123 and safranin have their effect on mitochondrial function was examined. Rhodamine 123 and safranin inhibit the stimulation of mitochondrial respiration by ADP in a similar concentration range. This inhibition occurs whether the mitochondria are respiring on succinate as a substrate or on ascorbate plus tetramethylphenylenediamine. ATP hydrolysis was stimulated twofold by high lipophilic cation concentration. These results demonstrate that rhodamine 123 and safranin affect oxidative phosphorylation in a similar fashion.  相似文献   

17.
P-glycoproteins encoded by multidrug resistance 1 (mdr1) genes are ATP-dependent transporters located in the plasma membrane that mediate the extrusion of hydrophobic compounds from the cell. Using cultured isolated rainbow trout hepatocytes, we characterized an mdr1-like transport mechanism of the teleost liver. Immunoblots with the monoclonal antibody C219, which recognizes a conserved epitope of P-glycoproteins, revealed the presence of immunoreactive protein(s) of 165 kDa in trout liver and cultured hepatocytes. In trout liver sections, the immunohistochemistry with C219 stained bile canalicular structures. Compounds known to interfere with mdr1-dependent transport (verapamil, vinblastine, doxorubicin, cyclosporin A, and vanadate) all increased the accumulation of rhodamine 123 by hepatocytes. Verapamil, vinblastine, and cyclosporin A decreased the efflux of rhodamine 123 from hepatocytes preloaded with rhodamine 123. By contrast, the substrate of the canalicular cation transporter tetraethylammonium and the inhibitor of the multidrug resistance-associated protein MK571 had no effect on rhodamine 123 transport. The results demonstrate the presence of an mdr1-like transport system in the teleost liver and suggest its function in biliary excretion.  相似文献   

18.
Fluorescein (Fl) and tetramethyl rhodamine (Rh) were evaluated as possible candidates for a double hapten sandwich system in enzyme immunohistology. Monoclonal antibodies were raised against Fl and Rh. Their fine-specificity was tested with a competition-like assay. A pair of Mab's was selected for immunohistology in which they functioned as a bridge between Fl/Rh conjugated antibodies and Fl/Rh labeled peroxidase and alkaline phosphatase, respectively. The binding of fluorescein labeled antibodies could be successfully demonstrated in histological slides. A large variability in the efficacy of staining was observed in the case of rhodamine labeled antibodies. The phenomenon is explained by assuming that tetramethyl rhodamine isothiocyanate reacts preferentially with lysine residues near to, or embedded in, hydrophobic regions in a protein. This condition may reduce the accessibility of the Rh moiety for anti-Rh antibodies.  相似文献   

19.
The fluorophore rhodamine B is often used in biological assays. It is inexpensive, robust under a variety of reaction conditions, can be covalently linked to bioactive molecules, and has suitable spectral properties in terms of absorption and fluorescence wavelength. Nonetheless, there are some drawbacks: it can readily form a spirolactam compound, which is nonfluorescent, and therefore may not be the dye of choice for all fluorescence microscopy applications. Herein this spirolactam formation was observed by purifying such a labeled peptoid with high performance liquid chromatography (HPLC) and monitored in detail by making a series of analytical HPLC runs over time. Additionally, a small library of eight peptoids with rhodamine B as label was synthesized. Analysis of the absorption properties of these molecules demonstrated that the problem of fluorescence loss can be overcome by coupling secondary amines with rhodamine B.  相似文献   

20.
A.S. KAPRELYANTS AND D.B. KELL. 1992. The fluorescent dye rhodamine 123 (Rh 123) is concentrated by microbial cells in an uncoupler-sensitive fashion. Steady-state fluorescence measurements with Micrococcus luteus indicated that provided the added dye concentration is below approximately 1 mmol/1, uptake is fully uncoupler-sensitive and is not accompanied by significant self-quenching of the fluorescence of accumulated dye molecules. 'Viable' and 'non-viable' cells are easily and quantitatively distinguished in a flow cytometer by the extent to which they accumulate the dye. The viability of a very slowly growing chemostat culture of Mic. luteus is apparently only about40–50%, as judged by plate counts, but most of the 'non-viable' cells can be resuscitated by incubation of the culture in nutrient medium before plating. The extent to which individual cells accumulate rhodamine 123 can be rapidly assessed by flow cytometry, and reflects the three distinguishable physiological states exhibited by the culture ('non-viable', 'viable' and 'non-viable-but-resuscitable'). Gram-negative bacteria do not accumulate rhodamine 123 significantly because their outer membrane is not permeable to it; a simple treatment overcomes this. Flow cytometry using rhodamine 123 should prove of general utility for the rapid assessment of microbial viability and vitality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号