首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.  相似文献   

2.
Fedirko  N. V.  Klevets  M. Yu.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2001,33(4):216-223
Using a Ca2+-sensitive fluorescent indicator, fura-2/AM, we recorded calcium transients in secretory cells of isolated acini of the rat submandibular salivary gland; these transients were induced by hyperpotassium-induced depolarization (after an increase in [K+] e up to 50 mM) of the plasma membrane of the above cells. Calcium transients were significantly suppressed by 50 M nifedipine. Addition of 10 M carbonyl cyanide m-chlorophenylhydrazone to the normal extracellular solution was accompanied by a rise in [Ca2+] i , whereas when hyperpotassium solution is used the effect was less expressed. Blockers of CA2+-ATPase in the cellular membrane and in the endoplasmic reticulum, eosin Y (5 M) and cyclopiazonic acid (CPA, 5 M), respectively, evoked a significant increase in [Ca2+] i and a decrease in the K+-depolarization-induced calcium transient. Extracellular application of caffeine (2, 10, or 30 mM) was accompanied by a concentration-dependent rise in [Ca2+] i . Therefore, potassium depolarization of the plasma membrane of acinar cells of the rat submandibular salivary gland activates both the voltage-dependent Ca2+ influx and Ca2+-induced Ca2+ release from the endoplasmic reticulum; the initial level of [Ca2+] i was restored at the joint involvement of Ca2+-ATPases in the plasma membrane and the membranes of the endoplasmic reticulum and mitochondria.  相似文献   

3.
Summary In mammals hepatic glycogenolysis is controlled by several hormones using cyclicAMP, Ca2+ and/or diacylglycerol as intracellular messengers. In contrast, in teleost fish, lungfish and amphibians fewer hormones promote hepatic glycogenolysis, and cyclicAMP is the sole intra-cellular messenger. This suggests that the -adrenergic mechanism became associated with the liver after amphibians separated from the vertebrate line. Reptiles separated later, and the aim of this study is to elucidate the hormonal control of hepatic glycogenolysis in a reptile,Amphibolurus nuchalis, and especially to determine which adrenergic receptor system is operative.InA. nuchalis liver pieces cultured in vitro, adrenaline and glucagon stimulated glycogen breakdown and glucose release, glycogen phosphorylase activity and accumulation of cyclicAMP in the tissue. Neurohypophysial peptides did not affect these parameters. These actions of adrenaline were completely blocked by the -adrenergic antagonist, propranolol and slightly reduced by the -adrenergic antagonist, phentolamine. Removal of Ca2+ from the medium and addition of the Ca2+ chelator, EGTA, did not block the actions of adrenaline, and the Ca2+ ionophore A23187 did not mimic these actions.The -adrenegic ligand [125I]-iodocyanopindolol (ICP) bound specifically to an isolated membrane preparation fromA. nuchalis liver with a calculated KD of 100 pM and a Bmax of 37.6 fmol·mg protein–1. The adrenergic ligands propranolol, isoprenaline, adrenaline, noradrenaline, phenylephrine and phentolamine displaced ICP with KD's of 20 nM, 1 M, 4.5 M, 32 M, 35 M and 500 M, respectively. The 2-adrenergic ligand yohimbine did not bind specifically to the membrane, but at 1 nM and 100 pM, specific binding of the 1-adrenergic ligand prazosin was 45% of total with a mean of 11.3 fmoles·mg protein–1 specifically bound.These findings indicate that the glycogenolytic actions of adrenaline are mediated primarily via -adrenergic receptors inA. nuchalis, but that -adrenergic receptors may also play some role in the control of hepatic metabolism.  相似文献   

4.
The effect of lipid peroxidation on the Mg2+-independent and Mg2+-dependent activity of brain cell membrane 5-nucleotidase was determined and the affinity of the active sites of Mg2+-dependent enzyme for 5-AMP (substrate) and Mg2+ (activator) was examined. Brain cell membranes were peroxidized at 37°C in the presence of 100 M ascorbate and 25 M FeCl2 (resultant) for 10 min. The activity of 5-nucleotidase and lipid peroxidation products (thiobarbituric acid reactive substances) were determined. At 10 min, the level of lipid peroxidation products increased from 0.20±0.10 to 17.5±1.5 nmoles malonaldehyde/mg membrane protein. The activity of Mg2+-independent 5-nucleotidase increased from 0.201±0.020 in controls to 0.305±0.028 mol Pi/mg protein/hr in peroxidized membranes. In the presence of 10mM Mg2+, the activity increased by 5.8-fold in the peroxidized membrane preparation in comparison to 14-fold in control In peroxidized preparation, the affinity of active site of Mg2+-dependent 5-nucleotidase for 5-AMP tripled, as indicated by a significant decrease inK m (K m=95±2 M AMP for control;K m=32±2 MAMP for peroxidized).V max was significantly reduced from 3.35±0.16 in control to 1.70±.09 moles Pi/mg protein in peroxidized membranes. The affinity of the active site for Mg2+ significantly increased (K m=6.17±0.37 mM Mg2+ for control;K m=4.0±0.31 peroxidized). The data demonstrate that lipid peroxidation modifies the Mg2+-dependent 5-nucleotidase function by altering the active sites for both the substrate and the activator. The modification of the 5-nucleotidase activity and the loss of Mg2+-dependent activation observed in this in-vitro study are similar to the changes previously observed by us in the hypoxic brain in-vivo. This suggests that lipid peroxidation which specifically alters the active site may be the underlying mechanism of the modification of 5-nucleotidase during hypoxia.  相似文献   

5.
Zinc-phosphorus interactions have been frequently studied using a diverse number of crop species, but attainment of reproducible Zn deficiencies, especially severe ones, has been hampered by the use of conventional hydroponic solutions wherein contaminating levels of Zn are often near-adequate for normal growth. We utilized novel, chelator-buffered nutrient solutions for precise imposition of Zn deficiencies. Tomato (Lycopersicon esculentum L. cv. Jackpot or Celebrity) seedlings were grown for 15 to 18 d in nutrient solutions containing 200, 600, or 1200 M P, and 0 to 91 M total Zn. Computed free Zn2+ activities were buffered at 10-10.3 M by inclusion of a 100-M excess (above the sum of the micronutrient metal concentrations) of the chelator DTPA. At total added Zn=0, acute Zn deficiency resulted in zero growth after seedling transfer, and plant death prior to termination. Free Zn2+ activities 10-10.6 M resulted in Zn deficiencies ranging from mild to severe, but activities 10-11.2 were required to cause hyperaccumulation of shoot P to potentially toxic levels. Despite severe Zn deficiency (i.e. ca. 20% of control growth), tissue Zn levels were usually much higher than the widely reported critical value of 20 mg kg-1, which may be an artifact of the selection of DTPA for buffering free Zn2+. Across Zn treatments, increasing solution P depressed growth slightly, especially in Celebrity, but corresponding increases in tissue P (indicative of enhanced P toxicity) or decreases in tissue Zn (P-induced Zn deficiency) were not observed. The depressive effect of P was also not explained by reductions in the water-soluble Zn fraction. Within 40 h, restoration of Zn supply did not ameliorate high leakage rates (as measured by K+ efflux) of Zn-deficient roots. Similarly, transfer of Zn-sufficient plants to deficient solutions did not induce leakiness within 40 h. Foliar sprays of ZnSO4 almost completely corrected both Zn deficiency and membrane leakiness of plants grown in low-Zn solutions. Hence, maintenance of root membrane integrity appears to depend on the overall Zn nutritional status of the plant, and not on the presence of certain free Zn2+ levels in the root apoplasm.  相似文献   

6.
This paper describes, for the first time, de novo adventitious root formation from thin cell layers (TCLs) of Arabidopsis thaliana. The objective of the study was to determine the optimal hormonal and light conditions and the optimal exogenous Ca2+ concentration for obtaining adventitious rooting (AR) from A. thaliana TCLs and to identify the tissue(s) involved in the process. The results show that maximum AR was obtained with a single-phase method in the presence of 10 M indole-3-butyric acid and 0.1 M kinetin under continuous darkness for 30 days and with 0.6 mM exogenous CaCl2. The endodermis was the only tissue involved in root meristemoid formation. The role of Ca2+ in AR and the importance of using Arabidopsis TCLs in studies on the genetic/biochemical control of AR are discussed.Abbreviations AR Adventitious rooting - CIM Callus-inducing medium - Col-0 Columbia ecotype - 2,4-D 2,4-Dichlorophenoxyacetic acid - HFM Hormone-free medium - HM Medium with 10 M IBA and 0.1 M Kin - IBA Indole-3-butyric acid - Kin Kinetin - LS Longitudinal section - NAA -Naphthaleneacetic acid - RIM Root-inducing medium - TCL Thin cell layer - WS Wassilewskija ecotype  相似文献   

7.
Ferric ethylenediamine di-(o-hydroxyphenylacetate) (FeEDDHA) and ferric hydroxyethylethylenediaminetriacetic acid (FeHEDTA) were evaluated as Fe sources for hydroponic growth of alfalfa (Medicago sativa L., cv. Mesilla), either dependent on N2 fixation or supplied with NO3. The hydroponic medium was maintained at pH 7.5 by addition of CaCO3. Nitrogen-fixing cultures were inoculated with Rhizobium meliloti 102 F51 and grown in medium without added nitrogen. After five to seven weeks of growth under greenhouse conditions, plants were harvested. Nitrogen fixation was measured by the acetylene reduction method.When FeEDDHA was supplied, growth of alfalfa, whether dependent on N2 fixation or supplied with NO3, was severely limited at concentrations typically used in hydroponic medium (10 or 20 M). Maximum yield of NO3-supplied alfalfa was obtained at 100 M while maximum yield of N2-fixing alfalfa was obtained in the range of 33 to 200 M FeEDDHA. Nodule fresh weights and N2 fixation rates increased with FeEDDHA concentration up to 33 M and remained essentially constant up to 200 M. With FeHEDTA, maximum yields of both NO3-grown and N2-fixing alfalfa were obtained at 10 M. Growth of NO3-supplied plants was inhibited at 200 M FeHEDTA while growth of N2-fixing plants was inhibited at 100 M FeHEDTA. The numbers of nodules per plant increased between 3.3 and 10 M FeHEDTA; however, inhibition of nodule formation occurred at a concentration of 33 M or higher. Nodule weights per plant and N2 fixation rates were depressed at 3.3 M as well as at 100 M FeHEDTA. The results suggest that alfalfa dependent on N2 fixation is more sensitive to limited Fe availability than alfalfa supplied with NO3.  相似文献   

8.
Callus was initiated from immature leaf and stem segments of rose (Rosa hybrida cv. Landora) and subcultured every four weeks on a basal medium of half-strength Murashige & Skoog (1962) salts plus 30 g l-1 sucrose (1/2 MS) and supplemented with 2.2 M BA, 5.4 M NAA and 2.2–9.0 M 2,4-D. Embryogenic callus and subsequently somatic embryos were obtained from 8-week-old callus culture on 1/2 MS+2.2 M BA+0.05 M NAA+0.3 M GA3+200–800 mg l-1 L-proline. Long-term cultures were established and maintained for up to 16 months by repeated subculture of embryogenic callus on L-proline deficient medium. About 12% of cotyledonary stage embryos taken from cultures cold-stored at 8±1°C for 4 days germinated on 1/2 MS+2.2 M BA+0.3 M GA3+24.7 M adenine sulphate.Abbreviations BA benzyladenine - NAA -naphthaleneacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid  相似文献   

9.
Summmary The Ca2+ uptake activity of rat cardiac sacroplasmic reticulum (CSR) in ventricular homogenates is highly unstable, and this instability probably accounts for the low specific activity of Ca2+ uptake in previously reported fractions of isolated rat CSR. The instability was observed at either 0° or 37°, but the Ca2+ uptake activity was relatively stable at 25°. The decay of Ca2+ uptake activity at 0° could not be prevented by either PMSF or leupeptin, but dithiothreitol exerted some protective effects. Sodium metabisulfite prevented decay of the Ca2+ uptake activity of homogenates kept on ice but not of homogenates kept at 37°. We also found that release of the CSR from the cellular debris required homogenization in high KCI. This distinguishes rat CSR from canine CSR. Isolated CSR was produced by a combination of differential centrifugation and discontinuous sucrous gradient centrifugation. The average rate of the sustained oxalate-supported calcium uptake in the resulting CSR fraction was 0.36 mol/min-mg in the absence of CSR calcium channel blockers and 0.67 mol/min/mg in the presence of 10 M ruthenium red. Thus, this preparation has the advantage of containing both the releasing and non-releasing fractions of the CSR. The Ca2+-ATPase rates averaged 1.07 mol/min/mg and 0.88 mol/min-mg in the absence and presence of ruthenium red, respectively. Although these rates are higher than previously reported rates, this CSR preparation should still be considered a crude preparation. A major distinction between the rat CSR and dog CSR was the lower content of Ca2+-ATPase in rat CSR, as judged by SDS-PAGE. Preparations of CSR isolated by this method may be useful in evaluating alterations in CSR function.  相似文献   

10.
SUMMARY 1. We previously reported that angiotensin III modulates noradrenergic neurotransmission in the hypothalamus of the rat. In the present work we studied the effects of angiotensin III on norepinephrine release and tyrosine hydroxylase activity. We also investigated the receptors and intracellular pathways involved in angiotensin III modulation of noradrenergic transmission.2. In rat hypothalamic tissue labeled with [3H]norepinephrine 1, 10, and 100 nM and 1 M losartan (AT1 receptor antagonist) had no effect on basal neuronal norepinephrine release, whereas 10 and 100 nM and 1 M losartan partially diminished norepinephrine secretion evoked by 25 mM KCl. The AT2 receptor antagonist PD 123319 showed no effect either on basal or evoked norepinephrine release. The increase in both basal and evoked norepinephrine output induced by 1 M angiotensin III was blocked by 1 M losartan, but not by 1 M PD 123319.3. The phospholipase C inhibitor 5 M neomicin inhibited the increase in basal and evoked norepinephrine release produced by 1 M angiotensin III.4. Tyrosine hydroxylase activity was increased by 1 M angiotensin III and this effect was blocked by 1 M LST and 5 M neomicin, but not by PD 123319. On the other hand, 1 M angiotensin III enhanced phosphatidyl inositol hydrolysis that was blocked by 1 M losartan and 5 M neomicin. PD 123319 (1 M) did not affect ANG III-induced phosphatidyl inositol hydrolysis enhancement.5. Our results confirm that angiotensin III acts as a modulator of noradrenergic transmission at the hypothalamic level through the AT1-phospholipase C pathway. This enhancement of hypothalamic noradrenergic activity suggests that angiotensin III may act as a central modulator of several biological processes regulated at this level by catecholamines, such as cardiovascular, endocrine, and autonomic functions as well as water and saline homeostasis.  相似文献   

11.
The Ca2+-pumping activity of skeletal sarcoplasmic reticulum vesicles is half-maximallyinhibited by 120 M clomipramine, 250 M desipramine, and 500 M imipramine or trimipramine.The inhibition is attributed to the dihydrodibenzazepine moiety, since3-(dimethylamino)propionitrile, reproducing the aliphatic amine chain, has no inhibitory action. The inhibitionis shown as a marked decrease of Ca2+ binding at equilibrium in theabsence of ATP and asa reduction of phosphorylation of the Ca2+-free conformation byinorganic phosphate. Therefore,the drug effect is consistent with preferential interaction of tricyclic antidepressants withthe Ca2+-free conformation of the nonphosphorylated enzyme. An additional decrease in theapparent rate constant of enzyme dephosphorylation, i.e., in the release of phosphate fromATP during enzyme cycling was also noticed.  相似文献   

12.
Summary Hydroponic experiments were undertaken to examine the effect of increasing aluminium levels on the mineral nutrition and root morphology ofT. repens growing in nutrient solution. Toxicity symptoms appear between 27.8 and 47.5 M Al3+ activity (148 to 297 M total aluminium). The threshold level corresponding to a 10% reduction in leaf fresh weight is estimated to be approximately 20 M Al3+ activity.The concentration of aluminium in the leaves of white clover increases exponentially with aluminium activity in the nutrient solution. The uptake of divalent cations was inhibited but aluminium enhanced potassium and nitrogen concentrations in both leaves and roots.At high pH (pH 6.0) the speciation of aluminium is controlled by the formation of solid aluminium phosphate and aluminium hydroxide except at the lowest aluminium level (37 M) where 99.9 per cent is present as the DTPA complex. As the concentration of total aluminium increases, the percentage of Al-DTPA and soluble aluminium hydroxide decreases whilst solid Al(OH)3 increases rapidly to reach a maximum of 91.6 percent (of the total aluminium) in the 1180 M aluminium treatment. At pH 4.5 the dominant forms of aluminium are free aluminium ion Al-DTPA, AlSO 4 + and AlOH2+.The roots of aluminium stressed plants showed symptoms typical of aluminium toxicity.  相似文献   

13.
Summary Exposure of porcine renal brush-border membrane vesicles to 1.2% cholate and subsequent detergent removal by dialysis reorients almost all N-ethylmaleimide (NEM)-sensitive ATPases from the vesicle inside to the outside. ATP addition to cholate-pretreated, but not to intact, vesicles causes H+ uptake as visualized by the pH indicator, acridine organge. The reoriented H+-pump is electrogenic because permeant extravesicular anions or intravesicular K+ plus valinomycin enhance H+ transport. ATP stimulates H+ uptake with an apparentK m of 93 m. Support of H+ uptake andP i liberation by ATP>GTPITP> UTP indicates a preference for ATP and utilization of other nucleotides at lower efficiency. ADP is a potent, competitive inhibitor of ATP-driven H+ uptake,(K i , 24 m). Mg2+ and Mn2– support ATP-driven H+ uptake, but Ca2+, Ba2+ and Zn2+ do not. Imm Zn2+ inhibits MgATP-driven H+ transport completely. NEM-sensitiveP i liberation is stimulated by Mg2+ and Mg2– and, unlike H+ uptake, also by Ca2+ suggesting Ca2+-dependent ATP hydrolysis unrelated to H+ transport. The inside-out oriented H+-pump is relatively insensitive toward oligomycin, azide, N,N-dicyclohexylcarbodiimide (DCCD) and vanadate, but efficiently inhibited by NEM (apparentK i , 0.77 m), and 4-chloro-7-nitro-benzoxa-1,3-diazole (NBD-Cl; apparentK i , 0.39 m). Taken together, the H+-ATPase of proximal tubular brush-border membranes exhibits characteristics very similar to those of vacuolar type (V-type) H+-ATPases. Hence,V-type H+-ATPases occur not only in intracellular organelles but also in specialized plasma membrane areas.  相似文献   

14.
Changes in carp myosin ATPase induced by temperature acclimation   总被引:8,自引:0,他引:8  
Summary Myosins were isolated from dorsal ordinary muscles of carp acclimated to 10°C and 30°C for a minimum of 5 weeks and examined for their ATPase activities. Ca2+-ATPase activity was different between myosins from cold-and warm-acclimated carp, especially at KCl concentrations ranging from 0.1 to 0.2 M, when measured at pH 7.0. The highest activity was 0.32 mol Pi·min-1·mg-1 at 0.2 M KCl for cold-acclimated carp and 0.47 mol Pi·min-1·mg-1 at 0.1 M KCl for warm-acclimated fish. The pH-dependency of Ca2+-ATPase activity at 0.5 M KCl for both carp was, however, similar exhibiting two maxima around 0.3 mol Pi·min-1·mg-1 at pH 6 and 0.4 mol Pi·min-1·mg-1 at pH 9. K+(EDTA)-ATPase activity at pH 7.0 neither exhibited differences between both myosins. It increased with increasing KCl concentration showing the highest value of about 0.4 mol Pi·min-1·mg-1 at 0.6–0.7 M KCl. Actin-activated myosin Mg2+-ATPase activity was markedly different between cold-and warm-acclimated carp. The maximum initial velocity was 0.53 mol Pi·min-1·mg-1 myosin at pH 7.0 and 0.05 M KCl for cold-acclimated carp, which was 1.6 times as high as that for warm-acclimated carp. These differences were in good agreement with those obtained with myofibrillar Mg2+-ATPase activity between both carp. No differences were, however, observed in myosin affinity to actin. Differences in myosin properties between cold- and warm-acclimated carp were further evidenced by its thermal stability. The inactivation rate constant of myosin Ca2+-ATPase was 25·10-4·s-1 at 30°C and pH 7.0 for cold-acclimated carp, which was about 4 times as high as that for warm-acclimated carp. Light chain composition did not differ between both carp myosins. The differences in a primary structure of the heavy chain subunit was, however, clearly demonstrated between both myosins by peptide mapping.Abbreviations ATPase adenosine 5-triphosphatase - DTNB 5,5 dithio-bis-2-nitrobenzoic acid - DTT dithiothreitol - EGTA ethyleneglycol bis (-aminoethylether)-N,N,N,N-tetraacetic acid - K D inactivation rate constant - SDS sodium dodecyl sulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis  相似文献   

15.
Although low Na+ is known to increase the intracellular Ca2+ concentration ([Ca2+]i) in cardiac muscle, the exact mechanisms of low Na+-induced increases in [Ca2+]i are not completely defined. To gain information in this regard, we examined the effects of low Na+ (35 mM) on freshly isolated cardiomyocytes from rat heart in the absence and presence of different interventions. The [Ca2+]i in cardiomyocytes was measured fluorometrically with Fura-2 AM. Following a 10 min incubation, the low Na+-induced increase in [Ca2+]i was only observed in cardiomyocytes depolarized with 30 mM KCl, but not in quiescent cardiomyocytes. In contrast, low Na+ did not alter the ATP-induced increase in [Ca2+]i in the cardiomyocytes. This increase in [Ca2+]i due to low Na+ and elevated KCl was dependent on the extracellular concentration of Ca2+ (0.25–2.0 mM). The L-type Ca2+-channel blockers, verapamil and diltiazem, at low concentrations (1 M) depressed the low Na+, KCl-induced increase in [Ca2+]i without significantly affecting the response to low Na+ alone. The low Na+, high KCl-induced increase in [Ca2+]i was attenuated by treatments of cardiomyocytes with high concentrations of both verapamil (5 and 10 M), and diltiazem (5 and 10 M) as well as with amiloride (5–20 M), nickel (1.25–5.0 mM), cyclopiazonic acid (25 and 50 M) and thapsigargin (10 and 20 M). On the other hand, this response was augmented by ouabain (1 and 2 mM) and unaltered by 5-(N-methyl-N-isobutyl) amiloride (5 and 10 M). These data suggest that in addition to the sarcolemmal Na+–Ca2+ exchanger, both sarcolemmal Na+–K+ATPase, as well as the sarcoplasmic reticulum Ca2+-pump play prominent roles in the low Na+-induced increase in [Ca2+]i. (Mol Cell Biochem 263: 151–162, 2004)  相似文献   

16.
A method has been developed for the preparation of zoospores from Phytophthora palmivora which allows the ionic composition of the suspension medium to be closely controlled. Sub-micromolar concentrations of calcium ions have been shown to play a key role in maintaining the zoospore state and in the transition to the cyst stage. Restriction of free Ca2+ to between 0.2 and 1 M resulted in zoospores which could be maintained for several hours before they finally encysted and germinated. When exposed to citrus-pectin, or 3 mM SrCl2, or to vigorous shaking, these zoospores underwent rapid synchronous encystment. At free Ca2+ concentrations below 0.1 M, zoospores lysed slowly. If exposed to inducers of encystment before lysis had occurred, the zoospores failed to respond to pectin or to vigorous shaking. However, they did differentiate in response to SrCl2 addition. Provided the free Ca2+ was maintained between 0.02 and 0.2 M, zoospores survived gentle centrifugation, a procedure which previously had resulted in encystment.Abbreviations IM (ion-mix) release medium containing 100 M KCl, 10 M CaCl2, and 10 M MgCl2  相似文献   

17.
Summary The relationship between the external Ca2+ concentrations [Ca2+]0 and the electrical tolerance (breakdown) in theChara plasmalemma was investigated. When the membrane potential was negative beyond –350–400 mV (breakdown potential, BP), a marked inward current was observed, which corresponds to the so-called punch-through (H.G.L. Coster,Biophys. J. 5:669–686, 1965). The electrical tolerance of theChara plasmalemma depended highly on [Ca2+]0. Increasing [Ca2+]0 caused a more negative and decreasing it caused a more positive shift of BP. BP was at about –700 mV in 200 M La3+ solution. [Mg2+]0 depressed the membrane electrical tolerance which was supposed to be due to competition with Ca2+ at the Ca2+ binding site of the membrane. Such a depressive effect of Mg2+ was almost masked when the [Ca2+]0/[Mg2+]0 ratio was roughly beyond 2.  相似文献   

18.
Urease fromAnabaena doliolum andAnacystic nidulans showed maximum activity at pH 7.0–7.4 at 40°C when measured in cell-free, phosphate-buffered extracts. It is a soluble enzyme located in cytoplasm. The apparent Km forA. doliolum urease was 120 M. Anacystis nidulans urease exhibited biphasic kinetics (Km=250 M and 1.66 mM). Enzyme, fully expressed in cells grown with urea, nitrate, or N2, was repressed in ammonia-grown cells, but ammonia did not inhibit the activity in vitro. Incubation of algal cells in N2 medium with chloramphenicol for 12 h caused degradation of urease. Cu2+ at 1 M inhibited the enzyme activity by 50%, whereas Co2+ and Ni2+ up to 20 M had no effect.p-Hydroxymercuribenzoate appeared to be a more powerful inhibitor of urease than acetohydroxamic acid.Address reprint requests to: c/o Prof. Robert Tabita, Department of Microbiology, Experimental Science Building #319, The University of Texas at Austin, Austin, TX 78712, USA.  相似文献   

19.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

20.
In washed cells of cadmium-sensitive Staphylococcus aureus 17810S oxidizing glutamate, initial Cd2+++ influx via the Mn2+ porter down membrane potential () was fast due to involvement of energy generated by two proton pumps—the respiratory chain and the ATP synthetase complex working in the hydrolytic direction. Such an unusual energy drain for rapid initial Cd2+ influx is suggested to be due to a series of toxic events elicited by Cd2+ accumulation down generated via the redox proton pump: (i) strong inhibition of glutamate oxidation accompanied by a decrease of electrochemical proton gradient ( H +) formation via the respiratory chain, (ii) automatic reversal of ATP synthetase from biosynthetic to hydrolytic mode, which was monitored by a decrease of H +-dependent ATP synthesis, (iii) acceleration of the initial Cd2+ influx down generated the reversed ATP synthetase, the alternative proton pump hydrolyzing endogenous ATP. The primary, cadmium-sensitive targets in strain 17810S seem to be dithiols located in the cytoplasmic glutamate oxidizing system, prior to the membrane-embedded NADH oxidation system. Inhibition by Cd2+ of H +-dependent ATP synthesis and of pH gradient (pH)-linked [14C]glutamate transport is a secondary effect due to cadmium-mediated inhibition of H + generation at the cytoplasmic level. In washed cells of cadmium-resistant S. aureus 17810R oxidizing glutamate, Cd2+ accumulation was prevented due to activity of the plasmid-coded Cd2+ efflux system. Consequently, H +-producing and -requiring processes were not affected by Cd2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号