首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Fine regulation of complex gene loci in higher eukaryotes is realized through the interaction of promoters with enhancers and repressors, which can be located long distance from the promoter regulated. A question arises, what mechanisms determine proper contacts between the regulatory elements over large distances in the genome. It is suggested that the important role in this process is played by a special class of regulatory elements, insulators, which block the interaction of enhancer and promoter, if they are positioned between them. Furthermore, enhancers do not directly inactivate the activities of enhancer and promoter. Nevertheless, an enhancer, isolated from one of the promoters by an insulator, can activate another, not isolated promoter. The best studied insulator of Drosophila melanogaster was found in the 5′ regulatory region of retrotransposon MDG4. It consists of 12 binding sites for the Su(Hw) protein, which is critical for the activity of this insulator. It was demonstrated that Su(Hw) insulator could protect the gene expression from the negative influence of heterochromatin and from repression, induced by the Polycomb group proteins (Pc proteins). In the present study, it was demonstrated that in transgenic lines, two or three copies of the Su(Hw) insulator could determine the interaction of the miniwhite enhancer and Pc dependant silencer with the miniwhite promoter. Thus, it was first demonstrated that insulators could participate in the regulation of the contacts between promoter and functionally opposite elements, responsible for either gene activation, or repression. Original Russian Text ? M.V. Kostyuchenko, E.E. Savitskaya, M.N. Krivega, P.G. Georgiev, 2008, published in Genetika, 2008, Vol. 44, No. 12, pp. 1693–1697.  相似文献   

5.
6.
7.
8.
9.
10.
11.
Chromatin insulators affect interactions between promoters and enhancers/silencers and function as barriers for the spreading of repressive chromatin. Drosophila insulator protein dCTCF marks active promoters and boundaries of many histone H3K27 trimethylation domains associated with repressed chromatin. In particular, dCTCF binds to such boundaries between the parasegment-specific regulatory domains of the Bithorax complex. Here we demonstrate that the evolutionarily conserved protein ENY2 is recruited to the zinc-finger domain of dCTCF and is required for the barrier activity of dCTCF-dependent insulators in transgenic lines. Inactivation of ENY2 by RNAi in BG3 cells leads to the spreading of H3K27 trimethylation and Pc protein at several dCTCF boundaries. The results suggest that evolutionarily conserved ENY2 is responsible for barrier activity mediated by the dCTCF protein.  相似文献   

12.
Much of the research on insulators in Drosophila has been done with transgenic constructs using the white gene (mini-white) as reporter. Hereby we report that the sequence between the white and CG32795 genes in Drosophila melanogaster contains an insulator of a novel kind. Its functional core is within a 368 bp segment almost contiguous to the white 3′UTR, hence we name it as Wari (white-abutting resident insulator). Though Wari contains no binding sites for known insulator proteins and does not require Su(Hw) or Mod(mdg4) for its activity, it can equally well interact with another copy of Wari and with unrelated Su(Hw)-dependent insulators, gypsy or 1A2. In its natural downstream position, Wari reinforces enhancer blocking by any of the three insulators placed between the enhancer and the promoter; again, Wari–Wari, Wari–gypsy or 1A2–Wari pairing results in mutual neutralization (insulator bypass) when they precede the promoter. The distressing issue is that this element hides in all mini-white constructs employed worldwide to study various insulators and other regulatory elements as well as long-range genomic interactions, and its versatile effects could have seriously influenced the results and conclusions of many works.  相似文献   

13.
14.
15.
16.
Chromatin insulators, or boundary elements, appear to control eukaryotic gene expression by regulating interactions between enhancers and promoters. Boundaries have been identified in the 3' cis-regulatory region of Abd-B, which is subdivided into a series of separate iab domains. Boundary elements such as Mcp, Fab-7, and Fab-8 and adjacent silencers flank the iab domains and restrict the activity of the iab enhancers. We have identified an insulator in the 755-bp Mcp fragment that is linked to the previously characterized Polycomb response element (PRE) and silences the adjacent genes. This insulator blocks the enhancers of the yellow and white genes and protects them from PRE-mediated repression. The interaction between the Mcp elements, each containing the insulator and PRE, allows the eye enhancer to activate the white promoter over the repressed yellow domain. The same level of white activation was observed when the Mcp element combined with the insulator alone was interposed between the eye enhancer and the promoter, suggesting that the insulator is responsible for the interaction between the Mcp elements.  相似文献   

17.
18.
19.
Insulators can block the action of enhancers on promoters and the spreading of repressive chromatin, as well as facilitating specific enhancer-promoter interactions. However, recent studies have called into question whether the activities ascribed to insulators in model transgene assays actually reflect their functions in the genome. The Drosophila even skipped (eve) gene is a Polycomb (Pc) domain with a Pc-group response element (PRE) at one end, flanked by an insulator, an arrangement also seen in other genes. Here, we show that this insulator has three major functions. It blocks the spreading of the eve Pc domain, preventing repression of the adjacent gene, TER94. It prevents activation of TER94 by eve regulatory DNA. It also facilitates normal eve expression. When Homie is deleted in the context of a large transgene that mimics both eve and TER94 regulation, TER94 is repressed. This repression depends on the eve PRE. Ubiquitous TER94 expression is “replaced” by expression in an eve pattern when Homie is deleted, and this effect is reversed when the PRE is also removed. Repression of TER94 is attributable to spreading of the eve Pc domain into the TER94 locus, accompanied by an increase in histone H3 trimethylation at lysine 27. Other PREs can functionally replace the eve PRE, and other insulators can block PRE-dependent repression in this context. The full activity of the eve promoter is also dependent on Homie, and other insulators can promote normal eve enhancer-promoter communication. Our data suggest that this is not due to preventing promoter competition, but is likely the result of the insulator organizing a chromosomal conformation favorable to normal enhancer-promoter interactions. Thus, insulator activities in a native context include enhancer blocking and enhancer-promoter facilitation, as well as preventing the spread of repressive chromatin.  相似文献   

20.
Chen Q  Lin L  Smith S  Lin Q  Zhou J 《Developmental biology》2005,286(2):629-636
In complex genomes, insulators set up chromatin domain boundaries and protect promoters from inappropriate activation by enhancers from neighboring genes. The Drosophila Abdominal-B locus uses insulator elements to organize its large regulatory region into several body segment-specific chromatin domains. This organization leads to a problem in enhancer-promoter communication, that is, how do distal enhancers activate the Abd-B promoter when there are several insulators in between? This issue is partially resolved by the Promoter Targeting Sequence, which can overcome the enhancer blocking effect of an insulator. In this study, we describe a new Promoter Targeting Sequence, PTS-6, from the Abd-B 3' regulatory region. PTS-6, comprised of approximately 200 bp, was found to bypass both homologous Abdominal-B insulators, such as Fab-7 and Fab-8, and a heterologous insulator, suHw. Most importantly, it also overcomes a combination of two insulators such as Fab-7/Fab-8. Thus, PTS-6 could, in principle, target remote enhancers that are separated from the Abd-B promoter by multiple insulators. In addition, PTS-6 selectively targets the distal enhancer to only one transgenic promoter, and it strongly facilitates Abd-B enhancers. These results suggest that promoter targeting is necessary for long-range enhancer-promoter communication in Abd-B, and PTS elements could be a common occurrence in large, complex genetic loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号