首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate if alterations of the amino acid metabolism may play a more important role in the etiology of diabetic microangiopathy than hitherto recognized, free amino acids in plasma were measured by means of high-performance liquid chromatography (HPLC) in healthy individuals (REF) and patients with insulin-dependent diabetes mellitus (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM). Isoleucine and leucine in IDDM were within normal limits, whereas they were significantly higher in NIDDM (P < 0.01 and P < 0.001, respectively). This was not due to age differences. In order to evaluate the impact of insulin on amino acid metabolism, amino acids were also measured in pregnant women (PREG) undergoing glucose tolerance tests as a screening for pregnancy diabetes and in patients with polycystic ovary syndrome (PCO) undergoing euglycemic insulin clamp tests. Insulin considerably reduced the amino acid concentration. Isoleucine and leucine were particularly depressed. On the whole there was strong covariance between the three branched-chain amino acids, isoleucine, leucine, and valine (P < 0.0001). There was no covariance between amino acid and glucose or HbAlc concentrations, A protein meal strongly stimulated insulin production (+55 mIU/liter), whereas a galactose meal revealed only a minor increase in insulin response (+ 12 mIU/liter) in contrast to a tolerance test with the same amount of glucose (+ 67 mIU/liter). It is concluded that disturbed amino acid metabolism may be a more important causative factor in the etiology of diabetic microangiopathy than hitherto recognized and, in addition, that this may affect the therapeutic approach in both IDDM and NIDDM patients.  相似文献   

2.
Intraoperative protein sparing with glucose.   总被引:1,自引:0,他引:1  
We examined the hypothesis that glucose infusion inhibits amino acid oxidation during colorectal surgery. We randomly allocated 14 patients to receive intravenous glucose at 2 mg x kg(-1) x min(-1) (glucose group) starting with the surgical incision or an equivalent amount of normal saline 0.9% (control group). The primary endpoint was whole body leucine oxidation; secondary endpoints were leucine rate of appearance and nonoxidative leucine disposal as determined by a stable isotope tracer technique (L-[1-(13)C]leucine). Circulating concentrations of glucose, lactate, insulin, glucagon, and cortisol were measured before and after 2 h of surgery. Leucine rate of appearance, an estimate of protein breakdown, and nonoxidative leucine disposal, an estimate of protein synthesis, decreased in both groups during surgery (P < 0.05). Leucine oxidation intraoperatively decreased from 13 +/- 3 to 4 +/- 3 micromol x kg(-1) x h(-1) in the glucose group (P < 0.05 vs. control group) whereas it remained unchanged in the control group. Hyperglycemia during surgery was more pronounced in patients receiving glucose (9.7 +/- 0.5 mmol/l, P < 0.05 vs. control group) than in patients receiving normal saline (7.1 +/- 1.0 mmol/l). The administration of glucose caused an increase in the circulating concentration of insulin (P < 0.05) resulting in a lower glucagon/insulin quotient than in the control group (P < 0.05). Intraoperative plasma cortisol concentrations increased in both groups (P < 0.05), whereas plasma concentrations of lactate and glucagon did not change. The provision of small amounts of glucose was associated with a decrease in amino acid oxidation during colorectal surgery.  相似文献   

3.
To determine the effect of glucose availability on glutamine metabolism, glutamine kinetics were assessed under conditions of hyperglycemia resulting from 1) intravenous infusion of 7.5% dextrose in healthy adults and 2) insulin deficiency in young adults with insulin-dependent diabetes mellitus (IDDM). Eight healthy adults and five young adults with IDDM were studied in the postabsorptive state by use of a primed continuous infusion of D-[U-(14)C]glucose, L-[5,5,5-(2)H(3)]leucine, and L-[3, 4-(13)C]glutamine. Whether resulting from insulin deficiency or dextrose infusion, the rise in plasma glucose was associated with increased glucose turnover (23.5 +/- 0.7 vs. 12.9 +/- 0.3 micromol. kg(-1). min(-1), P < 0.01 and 20.9 +/- 2.5 vs. 12.8 +/- 0.4 micromol. kg(-1). min(-1), P = 0.03, in health and IDDM, respectively). In both cases, high blood glucose failed to alter glutamine appearance rate (R(a)) into plasma [298 +/- 9 vs. 312 +/- 14 micromol. kg(-1). h(-1), not significant (NS) and 309 +/- 23 vs 296 +/- 26 micromol. kg(-1). h(-1), NS, in health and IDDM, respectively] and the estimated fraction of glutamine R(a) arising from de novo synthesis (210 +/- 7 vs. 217 +/- 10 micromol. kg(-1). h(-1), NS and 210 +/- 16 vs. 207 +/- 21 micromol. kg(-1). h(-1), NS, in health and IDDM, respectively). When compared with the euglycemic day, the apparent contribution of glucose to glutamine carbon skeleton increased when high plasma glucose resulted from intravenous dextrose infusion in healthy volunteers (10 +/- 0.8 vs. 4.8 +/- 0.3%, P < 0.01) but failed to do so when hyperglycemia resulted from insulin deficiency in IDDM. We conclude that 1) the contribution of glucose to the estimated rate of glutamine de novo synthesis does not increase when elevation of plasma glucose results from insulin deficiency, and 2) the transfer of carbon from glucose to glutamine may depend on insulin availability.  相似文献   

4.
Insulin resistance in acromegaly causes glucose intolerance and diabetes, but it is unknown whether it involves protein metabolism, since both insulin and growth hormone promote protein accretion. The effects of acromegaly and of its surgical cure on the insulin sensitivity of glucose and amino acid/protein metabolism were evaluated by infusing [6,6-(2)H(2)]glucose, [1-(13)C]leucine, and [2-(15)N]glutamine during a euglycemic insulin (1 mU x kg(-1) x min(-1)) clamp in 12 acromegalic patients, six studied again 6 mo after successful adenomectomy, and eight healthy controls. Acromegalic patients, compared with postsurgical and control subjects, had higher postabsorptive glucose concentration (5.5 +/- 0.3 vs. 4.9 +/- 0.2 micromol/l, P < 0.05, and 5.1 +/- 0.1 micromol/l) and flux (2.7 +/- 0.1 vs. 2.0 +/- 0.2 micromol x kg(-1) x min(-1), P < 0.01, and 2.2 +/- 0.1 micromol x kg(-1) x min(-1), P < 0.05) and reduced insulin-stimulated glucose disposal (+15 +/- 9 vs. +151 +/- 18%, P < 0.01, and 219 +/- 58%, P < 0.001 from basal). Postabsorptive leucine metabolism was similar among groups. In acromegalic and postsurgical subjects, insulin suppressed less than in controls the endogenous leucine flux (-9 +/- 1 and -12 +/- 2 vs. -18 +/- 2%, P < 0.001 and P < 0.05), the nonoxidative leucine disposal (-4 +/- 3 and -1 +/- 3 vs. -18 +/- 2%, P < 0.01 and P < 0.05), respectively, indexes of proteolysis and protein synthesis, and leucine oxidation (-17 +/- 6% in postsurgical patients vs. -26 +/- 6% in controls, P < 0.05). Within 6 mo, surgery reverses insulin resistance for glucose but not for protein metabolism. After adenomectomy, more leucine is oxidized during hyperinsulinemia.  相似文献   

5.
The effect of obesity on regional skeletal muscle and adipose tissue amino acid metabolism is not known. We evaluated systemic and regional (forearm and abdominal subcutaneous adipose tissue) amino acid metabolism, by use of a combination of stable isotope tracer and arteriovenous balance methods, in five lean women [body mass index (BMI) <25 kg/m(2)] and five women with abdominal obesity (BMI 35.0-39.9 kg/m(2); waist circumference >100 cm) who were matched on fat-free mass (FFM). All subjects were studied at 22 h of fasting to ensure that the subjects were in net protein breakdown during this early phase of starvation. Leucine rate of appearance in plasma (an index of whole body proteolysis), expressed per unit of FFM, was not significantly different between lean and obese groups (2.05 +/- 0.18 and 2.34 +/- 0.04 micromol x kg FFM(-1) x min(-1), respectively). However, the rate of leucine release from forearm and adipose tissues in obese women (24.0 +/- 4.8 and 16.6 +/- 6.5 nmol x 100 g(-1) x min(-1), respectively) was lower than in lean women (66.8 +/- 10.6 and 38.6 +/- 7.0 nmol x 100 g(-1) x min(-1), respectively; P < 0.05). Approximately 5-10% of total whole body leucine release into plasma was derived from adipose tissue in lean and obese women. The results of this study demonstrate that the rate of release of amino acids per unit of forearm and adipose tissue at 22 h of fasting is lower in women with abdominal obesity than in lean women, which may help obese women decrease body protein losses during fasting. In addition, adipose tissue is a quantitatively important site for proteolysis in both lean and obese subjects.  相似文献   

6.
Persons with conventionally treated insulin-dependent diabetes mellitus (IDDM) appear to be impaired in their ability to reduce fed-state urea production appropriately in response to dietary protein restriction (Hoffer LJ, Taveroff A, and Schiffrin A. Am J Physiol 272: E59-E67, 1997). To determine whether these conclusions apply to whole body sulfur amino acid (SAA) catabolism, we used samples from this protocol to measure daily urinary sulfate excretion and fed-state sulfate production after a high-protein test meal before and after dietary protein restriction. Eight normal subjects and six IDDM subjects treated with twice-daily intermediate- and short-acting insulin consumed a mixed test meal containing 0.50 g protein/kg after adaptation to 4 days of high protein intake (1.28 g protein/kg body wt) and again after 5 days of dietary protein restriction (0.044 g/kg). Adaptation to protein restriction decreased daily urinary sulfate and urea-N excretion by approximately 80%. Over the first 24 h of protein restriction, urinary sulfate excretion decreased more than urea-N excretion for both the normal and IDDM subjects. Under conditions of a high prior protein intake, fed-state sulfate production was normal for the IDDM subjects; protein restriction reduced fed-state sulfate production by 51% (normal subjects) and 59% (IDDM subjects; not significant). We conclude that whole body SAA metabolism is normal in conventionally treated IDDM before and after dietary protein restriction. SAA catabolism, as measured by fed-state sulfate production, may be a convenient and useful method to determine the extent of whole body protein dysregulation in IDDM.  相似文献   

7.
The effect of intravenous infusion of monoacetoacetin (glycerol monoacetoacetate) as a non-protein energy source was evaluated in burned rats. During 3 days of parenteral nutrition, in which animals received 14 g of amino acids/kg body wt. per day exclusively (group I) or with the addition of isoenergetic amounts (523 kJ/kg per day) of dextrose (group II), a 1:1 mixture of dextrose and monoacetoacetin (group III) or monoacetoacetin (group IV), significant decreases in urinary nitrogen excretion and whole-body leucine oxidation were observed in the three groups given additional non-protein energy as compared with group I. Serum ketone bodies (acetoacetate and 3-hydroxybutyrate) were decreased in rats given dextrose, whereas glucose and insulin increased significantly. Monoacetoacetin-infused animals (group IV) had high concentrations of ketone bodies without changes in glucose and insulin, whereas animals infused with both monoacetoacetin and glucose (group III) showed intermediate values. On day 4 of nutritional support, whole-body L-leucine kinetics were measured by using a constant infusion of L-[1-14C]leucine. In comparison with group I, the addition of dextrose or monoacetoacetin produced a significant decrease in plasma leucine appearance and release from whole-body protein breakdown. Gastrocnemius-muscle protein-synthesis rates were also higher in the three groups receiving additional non-protein energy. These findings suggest that monoacetoacetin can effectively replace dextrose as an intravenous energy source in stressed rats. Both fuels are similar in decreasing weight loss, nitrogen excretion, leucine release from whole-body protein breakdown and oxidation, in spite of differences in energy substrate and insulin concentrations.  相似文献   

8.
Muscle protein synthesis requires energy and amino acids to proceed and can be stimulated by insulin under certain circumstances. We hypothesized that short-term provision of insulin and nutritional energy would stimulate muscle protein synthesis in healthy subjects only if amino acid availability did not decrease. Using stable isotope techniques, we compared the effects on muscle phenylalanine kinetics across the leg of an amino acid-lowering, high-energy (HE, n = 6, 162 +/- 20 kcal/h) hyperglycemic hyperlipidemic hyperinsulinemic clamp with systemic insulin infusion to a low-energy (LE, n = 6, 35 +/- 3 kcal/h, P < 0.05 vs. HE) euglycemic hyperinsulinemic clamp with local insulin infusion in the femoral artery. Basal blood phenylalanine concentrations and phenylalanine net balance, muscle protein breakdown, and synthesis (nmol.min(-1).100 g leg muscle(-1)) were not different between groups. During insulin infusion, femoral insulinemia increased to a similar extent between groups and blood phenylalanine concentration decreased 27 +/- 3% in the HE group but only 9 +/- 2% in the LE group (P < 0.01 HE vs. LE). Phenylalanine net balance increased in both groups, but the change was greater (P < 0.05) in the LE group. Muscle protein breakdown decreased in the HE group (58 +/- 12 to 35 +/- 7 nmol.min(-1).100 g leg muscle(-1)) and did not change in the LE group. Muscle protein synthesis was unchanged in the HE group (39 +/- 6 to 30 +/- 7 nmol.min(-1).100 g leg muscle(-1)) and increased (P < 0.05) in the LE group (41 +/- 9 to 114 +/- 26 nmol.min(-1).100 g leg muscle(-1)). We conclude that amino acid availability is an important factor in the regulation of muscle protein synthesis in response to insulin, as decreased blood amino acid concentrations override the positive effect of insulin on muscle protein synthesis even if excess energy is provided.  相似文献   

9.
Patients with type 2 diabetes (DM) demonstrate inadequate insulin release, elevated gluconeogenesis, and diminished nonoxidative glucose disposal. Similar metabolic changes occur during systemic injury caused by infection, trauma, or cancer. Described here are metabolic changes occurring in 16 DM and 11 lung cancer patients (CA) and 13 normal volunteers (NV). After a 10-h overnight fast, all subjects had fasting hormone and substrate concentrations determined, along with rates of glucose production, leucine appearance (LA), and leucine oxidation (LO). Fasting insulin (data not shown) and C-peptide concentrations were elevated in DM and CA compared with weight-matched NV (0.72 +/- 0.09 and 0.64 +/- 0.08 vs. 0.51 +/- 0.03 mg/l, P < 0.05). C-reactive protein concentration was elevated in CA compared with DM and NV (23.3 +/- 6.0 vs. 4.2 +/- 1.4 and 2.1 +/- 0.5 mg/l, P < 0.01). All counterregulatory hormones were normal except for serum cortisol (11.4 +/- 1.0 and 12.1 +/- 1.0 vs. 8.9 +/- 0.7 microg/dl, DM and CA vs. NL, respectively, P < 0.05). Glucose production was increased in DM and CA compared with NV (4.22 +/- 0.6 and 3.53 +/- 0.3 vs. 2.76 +/- 0.2 mg x kg lean body wt(-1) x min(-1), P < 0.01). LO and LA were increased in DM and CA compared with NV (LO: 27.3 +/- 1.5 and 19.7 +/- 1.5 vs. 12.5 +/- 1.1 mmol x kg lean body wt(-1) x min(-1), P < 0.05; LA: 91.9 +/- 6.6 and 90.7 +/- 7.0 vs. 79.1 +/- 6.0 mmol. kg lean body wt(-1) x min(-1), P < 0.01). DM share similar metabolic derangements with CA. The increase in LA may be secondary to an increased glucose production where amino acids are mobilized to provide the liver with adequate substrate to make glucose. The increase in glucose production may also be part of the injury response, or it may represent a form of insulin resistance that exists in both the DM and (non-DM) CA patients.  相似文献   

10.
To determine whether increased amino acid availability can reduce proteolysis in premature neonates and to assess the capacity of infants born prematurely to acutely increase the irreversible catabolism of the essential amino acids leucine (via oxidation) and phenylalanine (via hydroxylation to form tyrosine), leucine and phenylalanine kinetics were measured under basal conditions and in response to a graded infusion of intravenous amino acids (1.2 and 2.4 g. kg(-1). day(-1)) in clinically stable premature (approximately 32 wk gestation) infants in the 1st wk of life. In contrast to the dose-dependent suppression of proteolysis seen in healthy full-term neonates, the endogenous rates of appearance of leucine and phenylalanine (reflecting proteolysis) were unchanged in response to amino acids (297 +/- 21, 283 +/- 19, and 284 +/- 31 micromol. kg(-1). h(-1) for leucine and 92 +/- 6, 92 +/- 4, and 84 +/- 7 micromol. kg(-1). h(-1) for phenylalanine). Similar to full-term neonates, leucine oxidation (40 +/- 5, 65 +/- 6, and 99 +/- 7 micromol. kg(-1). h(-1)) and phenylalanine hydroxylation (12 +/- 1, 16 +/- 1, and 20 +/- 2 micromol. kg(-1). h(-1)) increased in a stepwise fashion in response to graded amino acids. This capacity to increase phenylalanine hydroxylation may be crucial to meet tyrosine needs when exogenous supply is limited. Finally, to determine whether amino acids stimulate glucose production in premature neonates, glucose rate of appearance was measured during each study period. In response to amino acid infusion, rates of endogenous glucose production were unchanged (and near zero).  相似文献   

11.
Dietary creatine supplementation is associated with increases in muscle mass, but the mechanism is unknown. We tested the hypothesis that creatine supplementation enhanced myofibrillar protein synthesis (MPS) and diminished muscle protein breakdown (MPB) in the fed state. Six healthy men (26 +/- 7 yr, body mass index 22 +/- 4 kg/m(2)) were studied twice, 2-4 wk apart, before and after ingestion of creatine (21 g/day, 5 days). We carried out two sets of measurements within 5.5 h of both MPS (by incorporation of [1-(13)C]leucine in quadriceps muscle) and MPB (as dilution of [1-(13)C]leucine or [(2)H(5)]phenylalanine across the forearm); for the first 3 h, the subjects were postabsorptive but thereafter were fed orally (0.3 g maltodextrin and 0.083 g protein. kg body wt(-1) x h(-1)). Creatine supplementation increased muscle total creatine by approximately 30% (P < 0.01). Feeding had significant effects, doubling MPS (P < 0.001) and depressing MPB by approximately 40% (P < 0.026), but creatine had no effect on turnover in the postabsorptive or fed states. Thus any increase in muscle mass accompanying creatine supplementation must be associated with increased physical activity.  相似文献   

12.
This study was intended to compare exogenous [(13)C]glucose (Glu(exo)) oxidation in boys with insulin-dependent diabetes mellitus (IDDM) and healthy boys of similar age, weight, and maximal O(2) uptake. In a control trial with water intake (CT) and in a (13)C-enriched glucose trial (GT), subjects cycled for 60 min (58.8 +/- 0.9% maximal O(2) uptake) while the utilization of total glucose, total fat, and Glu(exo) was assessed. In CT, total glucose was 84.7 +/- 9.2 vs. 91.3 +/- 6.6 g/60 min (not significantly different) and total fat was 13.3 +/- 2.2 vs. 11.1 +/- 1.7 g/60 min (not significantly different) in IDDM vs. healthy boys, respectively. In GT, Glu(exo) was 10.4 +/- 1.7 vs. 14.8 +/- 1.1 g/60 min, corresponding to 9.0 +/- 1.0 vs. 12.4 +/- 0.5% of the total energy supply in IDDM and healthy boys, respectively (P < 0.05). Endogenous glucose was spared in both groups by 12.6 +/- 3.5% (P < 0.05). Blood glucose and plasma insulin concentrations were two- to threefold higher in IDDM vs. healthy boys in both trials. In conclusion, Glu(exo) is impaired in exercising boys with IDDM, even when plasma insulin levels are elevated.  相似文献   

13.
The pathogenesis of plasma membrane alterations present in diabetes mellitus is unclear. To add new insights to the question, platelet membrane properties were evaluated in 16 women presenting impaired glucose tolerance at the 28-29th week of gestation (GDM) and in 8 women with insulin-dependent diabetes mellitus (IDDM). 15 healthy pregnant women (HPW) and 21 healthy non-pregnant (HNPW) women were the control group for GDM and IDDM, respectively. Pregnancy (HPW vs. HNPW) provoked an increase in Ca(2+)-ATPase activity and a decrease in membrane fluidity; in contrast, Na+/K(+)-ATPase, intracellular free Ca2+ concentrations, membrane cholesterol and phospholipid content did not vary. Both GDM and IDDM showed lower Na+/K(+)-ATPase activity and higher Ca2+ concentration, compared to HPW and HNPW, respectively, whereas Ca(2+)-ATPase activity was higher only in IDDM; furthermore, membrane fluidity was lower in GDM and higher in IDDM. Finally, GDM showed higher membrane cholesterol content. Both GDM and IDDM showed a very good metabolic control so that variations reported cannot be due to hyperglycemia; it is tempting to suggest that membrane variations are present before the clinical metabolic alteration. Furthermore, both GDM and IDDM were on insulin therapy, therefore: (i) insulin may be the pathogenetic factor of higher intracellular free Ca2+ concentrations and lower Na+/K(+)-ATPase activity since they both varied accordingly in GDM and IDDM, but not of (ii) changes in Ca(2+)-ATPase, membrane fluidity and cholesterol content which did not vary accordingly in GDM and IDDM.  相似文献   

14.
Little is known about amino acid (AA) and protein metabolism in lactating women. We hypothesized: 1) AA sources other than the plasma acid pool provide substrate for milk protein synthesis in humans and 2) if albumin was one such source, then albumin fractional synthesis rate (FSR) is higher in the lactating women. To test these hypotheses, six healthy exclusively breast-feeding women [27 +/- 3 yr; body mass index (BMI) 26 +/- 2 kg/m2] between 6 wk and 3 mo postpartum and six healthy nonlactating women (28 +/- 2 yr; BMI 22 +/- 1 kg/m2) were studied two times, in random order, during 22 h fasting or 10 h of continuous feeding with a mixed nutrient drink. Protein metabolism was determined using [1-13C]leucine and [15N2]urea. In both the fed and fasted states, a significant portion of milk protein (20 +/- 5 and 31 +/- 6%, respectively) was derived from sources other than the plasma free AA pool. A 70% higher (P < 0.02) FSR of albumin was observed in lactating women during feeding, suggesting that albumin is a likely source of AA for milk protein synthesis. We conclude that plasma free AA contribute only 70-80% of the substrate for milk protein synthesis in humans and that albumin may be a significant source of amino acids for the remainder.  相似文献   

15.
The effects of prolonged caloric restriction (CR) on protein kinetics in lean subjects has not been investigated previously. The purpose of this study was to test the hypotheses that 21 days of CR in lean subjects would 1) result in significant losses of lean mass despite a suppression in leucine turnover and oxidation and 2) negatively impact exercise performance. Nine young, normal-weight men [23 +/- 5 y, 78.6 +/- 5.7 kg, peak oxygen consumption (Vo2 peak) 45.2 +/- 7.3 ml.kg(-1).min(-1), mean +/- SD] were underfed by 40% of the calories required to maintain body weight for 21 days and lost 3.8 +/- 0.3 kg body wt and 2.0 +/- 0.4 kg lean mass. Protein intake was kept at 1.2 g.kg(-1).day(-1). Leucine kinetics were measured using alpha-ketoisocaproic acid reciprocal pool model in the postabsorptive state during rest and 50 min of exercise (EX) at 50% of Vo2 peak). Body composition, basal metabolic rate (BMR), and exercise performance were measured throughout the intervention. At rest, leucine flux (approximately 131 micromol.kg(-1).h(-1)) and oxidation (R(ox); approximately 19 micromol.kg(-1).h(-1)) did not differ pre- and post-CR. During EX, leucine flux (129 +/- 6 vs. 121 +/- 6) and R(ox) (54 +/- 6 vs. 46 +/- 8) were lower after CR than they were pre-CR. Nitrogen balance was negative throughout the intervention ( approximately 3.0 g N/day), and BMR declined from 1,898 +/- 262 to 1,670 +/- 203 kcal/day. Aerobic performance (Vo2 peak, endurance cycling) was not impacted by CR, but arm flexion endurance decreased by 20%. In conclusion, 3 wk of caloric restriction reduced leucine flux and R(ox) during exercise in normal-weight young men. However, despite negative nitrogen balance and loss of lean mass, whole body exercise performance was well maintained in response to CR.  相似文献   

16.
It was the aim of this study to examine the potential regulatory effects of a long-term low dietary protein supply on the transport capacity of the jejunal brush-border membrane for amino acids. For this purpose, we used the neutral amino acids L-alanine (representative for nonessential amino acids) and L-leucine (representative for essential amino acids) as model substances. Ten sheep lambs, 8 weeks of age and 19-27 kg body weight, were allotted to two dietary regimes with either adequate or reduced protein supply which was achieved by 17.9% and 9.7% of crude protein in the concentrated feed, respectively. The feeding periods were 4-6 weeks in length. Similarly, eight goat kids of 5-7 weeks of age and 8-14 kg body weight were allotted to either adequate (crude protein 20.1%, feeding period 9-12 weeks) or reduced protein supply (10.1%, feeding period 17-18 weeks). Dietary protein reduction in lambs caused a significant body weight loss of 0.6 +/- 0.7 kg, whereas the body weight in control animals increased by 1.9 +/- 0.7 kg (P<0.05). Plasma urea concentrations decreased significantly by 60% (low protein 2.3 +/- 0.1 versus control 5.7 +/- 0.2 mmol l(-1), P<0.001). In kids, reduction of dietary protein intake led to significant decreases of the daily weight gain by 48% from 181 +/- 8 g to 94 +/- 3 g (P<0.001) and daily dry matter intake by 27% from 568 +/- 13 g to 417 +/- 6 g (P<0.01). Respective urea concentrations in plasma were reduced by 77% from 5.2 +/- 0.4 to 1.2 +/- 0.2 mmol l(-1) (P<0.01). Kinetic analyses of the initial rates of alanine uptake into isolated jejunal brush-border membrane vesicles from sheep and goats as affected by low dietary protein supply yielded that the apparent Km was neither significantly different between the species nor significantly affected by the feeding regime thus ranging between 0.12 and 0.16 mmol.l(-1). Reduction of dietary protein, however, resulted in significantly decreased Vmax values of the transport system by 25-30%, irrespective of the species. Kinetic analyses of the initial rates of leucine uptake into jejunal brush-border membrane vesicles from sheep and goats yielded that leucine uptake was mediated by Na+-dependent as well as Na+-independent processes. Similar to alanine, apparent Km values of leucine uptake were neither different between the species nor affected due to low dietary protein and ranged between 0.08 and 0.15 mmol l(-1). In contrast to the alanine transport mechanism, dietary protein reduction resulted in increased Vmax values of Na+-dependent leucine transport by 53% in sheep and 230% in goats. Similarly, Na+-independent leucine uptake was stimulated by 85% and 200% in sheep and in goats, respectively. This study shows adaptation of amino acid absorption at the brush-border membrane level of jejunal enterocytes of small ruminants due to dietary protein reduction. Whereas the transport capacity for the nonessential amino acid alanine was reduced due to low dietary protein, the transport capacity for the essential amino acid leucine was markedly stimulated. From this, the involvement of rather different feedback mechanisms in adaptation of intestinal amino acid transport mechanisms has to be discussed.  相似文献   

17.
Insulin resistance (IR) is a hallmark of pregnancy. Because increased visceral fat (VF) is associated with IR in nonpregnant states, we reasoned that fat accretion might be important in the development of IR during pregnancy. To determine whether VF depots increase in pregnancy and whether VF contributes to IR, we studied three groups of 6-mo-old female Sprague-Dawley rats: 1) nonpregnant sham-operated rats (Nonpreg; n = 6), 2) pregnant sham-operated rats (Preg; n = 6), and 3) pregnant rats in which VF was surgically removed 1 mo before mating (PVF-; n = 6). VF doubled by day 19 of pregnancy (Nonpreg 5.1 +/- 0.3, Preg 10.0 +/- 1.0 g, P < 0.01), and PVF- had similar amounts of VF compared with Nonpreg (PVF- 4.6 +/- 0.8 g). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp in late gestation in chronically catheterized unstressed rats. Glucose IR (mg.kg(-1).min(-1)) was highest in Nonpreg (19.4 +/- 2.0), lowest in Preg (11.1 +/- 1.4), and intermediate in PVF- (14.7 +/- 0.6; P < 0.001 between all groups). During the clamp, Nonpreg had greater hepatic insulin sensitivity than Preg [hepatic glucose production (HGP): Nonpreg 4.5 +/- 1.3, Preg 9.3 +/- 0.5 mg.kg(-1).min(-1); P < 0.001]. With decreased VF, hepatic insulin sensitivity was similar to nonpregnant levels in PVF- (HGP 4.9 +/- 0.8 mg.kg(-1).min(-1)). Both pregnant groups had lower peripheral glucose uptake compared with Nonpreg. In parallel with hepatic insulin sensitivity, hepatic triglyceride content was increased in pregnancy (Nonpreg 1.9 +/- 0.4 vs. Preg 3.2 +/- 0.3 mg/g) and decreased with removal of VF (PVF- 1.3 +/- 0.4 mg/g; P < 0.05). Accretion of visceral fat is an important component in the development of hepatic IR in pregnancy, and accumulation of hepatic triglycerides is a mechanism by which visceral fat may modulate insulin action in pregnancy.  相似文献   

18.
Glutamine may be a conditionally essential amino acid in low-birth-weight (LBW) preterm neonates. Exogenously administered amino acids, by providing anaplerotic carbon into the tricarboxylic acid cycle, could result in greater cataplerotic efflux and glutamine de novo synthesis. The effect of dose and duration of amino acid infusion on glutamine and nitrogen (N) kinetics was examined in LBW infants in the period immediately after birth. Preterm neonates (<32 weeks gestation, birth weights 809-1,755 g) were randomized to initially receive either 480 or 960 micromol x kg(-1) x h(-1) of an intravenous amino acid solution for 19-24 hours, followed by a higher or lower amino acid load for either 5 h or 24 h. Glutamine de novo synthesis, leucine N, phenylalanine, and urea kinetics were determined using stable isotopic tracers. An increase in amino acid infusion from 480 to 960 micromol x kg(-1) x h(-1) for 5 h resulted in decreased glutamine de novo synthesis in every neonate (384.4 +/- 38.0 to 368.9 +/- 38.2 micromol x kg(-1) x h(-1), P < 0.01) and a lower whole body rate of proteolysis (P < 0.001) and urea synthesis (P < 0.001). However, when the increased amino acid infusion was extended for 24 h, glutamine de novo synthesis increased (369.7 +/- 92.6 to 483.4 +/- 97.5 micromol x kg(-1) x h(-1), P < 0.001), whole body rate of proteolysis did not change, and urea production increased. Decreasing the amino acid load resulted in a decrease in glutamine rate of appearance (R(a)) and leucine N R(a), but had no effect on phenylalanine R(a). Acutely stressed LBW infants responded to an increase in amino acid load by transiently suppressing whole body rate of glutamine synthesis, proteolysis, and oxidation of protein. The mechanisms of this transient effect on whole body protein/nitrogen metabolism remain unknown.  相似文献   

19.
Protein synthesis and eukaryotic initiation factor (eIF) activation are increased in muscle and liver of pigs parenterally infused with amino acids and insulin. To examine the effects of enteral protein and carbohydrate on protein synthesis, pigs (n = 42, 1.7 kg body wt) were fed isocaloric milk diets containing three levels of protein (5, 15, and 25 g x kg body wt(-1) x day(-1)) and two levels of lactose (low = 11 and high = 23 g x kg body wt(-1) x day(-1)) from 1 to 6 days of age. On day 7, pigs were gavage fed after 4-h food deprivation, and tissue protein synthesis rates and biomarkers of mRNA translation were assessed. Piglet growth and protein synthesis rates in muscle and liver increased with dietary protein and plateaued at 15 g x kg body wt(-1) x day(-1) (P < 0.001). Growth tended to be greater in high-lactose-fed pigs (P = 0.07). Plasma insulin was lowest in pigs fed 5 g x kg body wt(-1) x day(-1) protein (P < 0.0001). Plasma branched-chain amino acids increased as protein intake increased (P < 0.0001). Muscle (P < 0.001) and liver (P < or = 0.001) ribosomal protein S6 kinase-1 and eIF4E-binding protein phosphorylation increased with protein intake and plateaued at 15 g x kg body wt(-1) x day(-1). The results indicate that growth and protein synthesis rates in neonatal pigs are influenced by dietary protein and lactose intake and might be mediated by plasma amino acids and insulin levels. However, feeding protein well above the piglet's requirement does not further stimulate the activation of translation initiation or protein synthesis in skeletal muscle and liver.  相似文献   

20.
The aims of this study were to compare different tracer methods to assess whole body protein turnover during 6 h of prolonged endurance exercise when carbohydrate was ingested throughout the exercise period and to investigate whether addition of protein can improve protein balance. Eight endurance-trained athletes were studied on two different occasions at rest (4 h), during 6 h of exercise at 50% of maximal O2 uptake (in sequential order: 2.5 h of cycling, 1 h of running, and 2.5 h of cycling), and during subsequent recovery (4 h). Subjects ingested carbohydrate (CHO trial; 0.7 g CHO.kg(-1.)h(-1)) or carbohydrate/protein beverages (CHO + PRO trial; 0.7 g CHO.kg(-1).h(-1) and 0.25 g PRO.kg(-1).h(-1)) at 30-min intervals during the entire study. Whole body protein metabolism was determined by infusion of L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea tracers with sampling of blood and expired breath. Leucine oxidation increased from rest to exercise [27 +/- 2.5 vs. 74 +/- 8.8 (CHO) and 85 +/- 9.5 vs. 200 +/- 16.3 mg protein.kg(-1).h(-1) (CHO + PRO), P < 0.05], whereas phenylalanine oxidation and urea production did not increase with exercise. Whole body protein balance during exercise with carbohydrate ingestion was negative (-74 +/- 8.8, -17 +/- 1.1, and -72 +/- 5.7 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. Addition of protein to the carbohydrate drinks resulted in a positive or less-negative protein balance (-32 +/- 16.3, 165 +/- 4.6, and 151 +/- 13.4 mg protein.kg(-1).h(-1)) when L-[1-13C]leucine, L-[2H5]phenylalanine, and [15N2]urea, respectively, were used as tracers. We conclude that, even during 6 h of exhaustive exercise in trained athletes using carbohydrate supplements, net protein oxidation does not increase compared with the resting state and/or postexercise recovery. Combined ingestion of protein and carbohydrate improves net protein balance at rest as well as during exercise and postexercise recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号