首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine if the altered jejunal motility previously demonstrated in this animal model of food protein-induced intestinal anaphylaxis is (a) a localized (the jejunal site of challenge), or a generalized response of the small intestine, and (b) associated with more rapid aboral transit of intraluminal contents. Hooded-Lister rats, 100-150 g in weight, were sensitized by intraperitoneal injection of 10 micrograms egg albumin. Control rats were sham-sensitized. On day 7 rats were surgically prepared with six bipolar electrodes from duodenum to ileum and (or) a jejunostomy tube was positioned at the ligament of Treitz. On day 14, after an 18-h fast, recording of myoelectric activity were obtained from four sensitized animals with electrodes from duodenum to ileum during a control period for 45 min after saline challenge and for 45 min after antigen challenge. Control (n = 25) and sensitized (n = 31) animals with only a jejunostomy had Na2 51CrO4 instilled through the jejunostomy in 0.5 mL of saline, with or without egg albumin, either during a fast or after a standard meal. Propulsion of isotope through the small bowel was allowed to progress for 15 min, the animals were sacrificed, and their gut was removed for division into eight equal segments of small intestine, cecum, and remaining colon. The radioactivity of each segment was determined in a gamma counter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The origin of nitric oxide synthase-containing nerve fibers in rat celiac-superior mesenteric ganglion was examined using retrograde tracing techniques combined with the immunofluorescence method. Fluoro-Gold was injected into the celiac-superior mesenteric ganglion. Neuronal cell bodies retrogradely labeled with Fluoro-Gold in the thoracic spinal cord, the dorsal root ganglia at the thoracic level, the nodose ganglion, and the intestine from the duodenum to the proximal colon were examined for nitric oxide synthase immunoreactivity. About 60% of sympathetic preganglionic neurons in the intermediolateral nucleus projecting to the celiac-superior mesenteric ganglion were immunoreactive for nitric oxide synthase, as were approximately 27% of nodose ganglion neurons and about 65% of dorsal root ganglion neurons projecting to the cceliac-superior mesenteric ganglion. Neurons projecting to the celiac-superior mesenteric ganglion were found in the myenteric plexus of the small and large intestine. In the proximal colon, about 23% of such neurons were immunoreactive for nitric oxide synthase. However, in the small intestine, no immunoreactivity was found in these neurons.  相似文献   

3.
We have previously utilized a rat animal model to demonstrate that challenge of fasted sensitized animals with antigenic food protein is associated with diarrhea and altered intestinal myoelectric and motor activities. In this paper we examine the effect of intestinal anaphylaxis on postprandial motility in the same animal model. Hooded Lister rats were sensitized (S) by intraperitoneal injection of 10 micrograms egg albumin (i.e., antigen (Ag) and compared with sham-sensitized controls (C). Seven days later, three bipolar jejunal electrodes and a jejunostomy tube, for motility recording and Ag administration, were implanted. On day 14, intestinal myoelectric and motor activities were measured in fed animals before and after intraluminal challenge with Ag (100 mg egg albumin/0.5 mL saline) or placebo (P; 0.5 mL saline). Specific immunoglobulin E serum titres were greater than or equal to 1:64 in S animals, while C animals showed no response. None of the C animals challenged with P or Ag and none of the S animals challenged with P defecated after challenge, but all the S animals challenged with Ag developed diarrhea (p less than 0.001). There was no disruption or alteration of the fed motility pattern in C animals challenged with P or Ag, or S animals challenged with P. In fed S animals challenged with Ag the fed motility pattern persisted, but there was a significant (p less than 0.05) increase in the number of high-amplitude aborally propagating clustered contractions, where the phasic contractile activity was superimposed on a sustained tonic elevation of intraluminal pressure lasting 5-10 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To determine if migrating action potential complexes (MAPCs) are a feature of normal motility, Hooded-Lister rats (100-150 g) were surgically prepared with three pairs of bipolar jejunal electrodes spaced 2.5 cm apart and with a jejunostomy tube for motility recording. Animals were studied conscious and unrestrained on postoperative day 14 after an 18-h fast. Intestinal myoelectric and motor activity was recorded for a 1-h interval in 24 animals that continued to fast and in 12 animals that were allowed to feed for 10 min. Fasting rats had a jejunal slow wave frequency of 32 +/- 2 contractions/min which did not differ significantly after feeding. Migrating myoelectric complexes (MMC) were clearly identified in all fasting animals and had a cycle period of 10.0 +/- 3.6 min. MAPCs were seen during phase II in 83% of MMCs and had an average distribution of 4.2 +/- 3.9/MMC. Feeding abolished the MMC and initiated a continuous irregular pattern of electrical spiking and associated contractile activity. Migrating action potential complexes were seen after feeding with a frequency of 1.8 +/- 0.4/min. It is concluded that MAPCs are a common feature of normal interdigestive phase II and also of postprandial jejunal motility in the rat. This supports the hypothesis that the MAPC is a basic propulsive motor pattern intrinsic to normal intestinal function.  相似文献   

5.
To determine whether the release of newly formed mediators such as the peptidoleukotrienes and platelet-activating factor might modulate the food protein induced jejunal smooth muscle contraction observed in sensitized rats, Hooded-Lister rats were sensitized by injection of ovalbumin (10 micrograms i.p.) and controls were sham sensitized with saline. Fourteen days later the contractility of longitudinally (n = 9) and circularly (n = 9) oriented jejunal segments (mucosa intact) were examined in standard tissue baths in response to antigen, leukotrienes, and platelet-activating factor alone and in the presence of a specific leukotriene receptor antagonist (MK-571), a 5-lipoxygenase inhibitor (L651,392), and a platelet-activating factor receptor antagonist (WEB 2086). Although the responses of control and sensitized tissues to stretch and 10(-4) M bethanechol were similar, only sensitized tissues contracted in response to antigen (1 mg/mL). MK-571 (10(-5) M) reduced or significantly inhibited the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M leukotrienes C4, D4, or E4, but neither L651,392 (10(-4) M) nor MK-571 (10(-5) M) significantly reduced the contractile response of sensitized tissues to antigen challenge. WEB 2086 (10(-4) M) significantly (p less than 0.01) reduced the contractile response of sensitized longitudinally and circularly oriented tissues to 10(-7) M platelet-activating factor but did not significantly alter the response to antigen in longitudinally (45% of control, p = 0.14) or circularly (118% of control, ns) oriented jejunal smooth muscle. In this model leukotrienes and platelet-activating factor play an insignificant role in modulating food protein induced jejunal smooth muscle contraction in intestinal anaphylaxis.  相似文献   

6.
An accurately validated method was developed for quantitative determination of succinate dehydrogenase (EC 1.3.99.1; SDH) activity in individual sympathetic neuron perikarya by microdensitometric measurement of an SDH-nitroblue tetrazolium-derived formazan final reaction product. Optimal incubation medium and reaction conditions were determined for measurement of reaction product in cryostat sections of rat superior cervical and celiac-superior mesenteric ganglia. The Beer-Lambert laws were verified for the ganglion tissue, and microdensitometric measurements (expressed as mean cell density readings; MCDR/min-1), characteristic of the Michaelis-Menten equation, enabled the results to be used for enzyme kinetic determinations of SDH activity. Km and Vmax values were obtained following Hans linear transformation of the readings. Between the ages of 6-24 months no significant variations in Km values were recorded, indicating an unchanged structure for SDH (overall mean Km = 0.083 +/- 0.055 mM). However, in both ganglia there were significant decreases (ranging from 43-54%) in Vmax values for SDH at 24 months. The overall mean Vmax value at 6 months was 4.01 +/- 0.61 (MCDR) and at 24 months was 2.07 +/- 0.76 (MCDR). This suggests that an overall decrease in metabolic activity takes place with age in sympathetic neurons of the rat superior cervical and celiac-superior mesenteric ganglia.  相似文献   

7.
Previous studies suggested that although rats that were passively sensitized [monoclonal murine immunoglobulin E (IgE)] would respond to pulmonary antigen challenge with an immediate increase in resistance, they exhibited no late increases in resistance, unlike late changes in rats actively sensitized to preferentially produce IgE antibody. We hypothesized that passively sensitized rats also would not develop antigen-induced pulmonary inflammation. In a blinded protocol we compared immediate responses and pulmonary resistance and inflammation at 8, 19 and 24 h after challenge with placebo antigen, with dinitrophenol-bovine serum albumin (DNP-BSA) to elicit a passively sensitized response, or with ovalbumin (OA) to elicit an actively sensitized response. Despite similar immediate responses to OA and DNP-BSA, only the rats challenged with OA had marked inflammatory changes and a significant incidence of late elevations in resistance. Inflammation scores and lung resistance were significantly correlated only in the OA group. We also observed that anesthesia with fentanyl/droperidol significantly attenuated the immediate but not the late responses to antigen challenge, compared with rats anesthetized with ketamine. We conclude that IgE-mediated immediate responses to pulmonary antigen challenge are insufficient, and may be unnecessary, to initiate antigen-induced late inflammatory changes.  相似文献   

8.
With its abundance of neurons and immunocytes, the gut is a potentially important site for the study of the interaction between the nervous and immune systems. Using immunohistochemical techniques, we tested the hypothesis that gut-associated lymphoid tissue in the porcine small intestine might receive catecholaminergic, cholinergic and peptidergic innervation. Antibodies against protein gene product (PGP) 9.5 were employed to detect neuronal membranes; antibodies against tyrosine hydroxylase (TH), type 2 vesicular monoamine transporter (VMAT-2) and choline acetyltransferase (ChAT) were used to detect catecholaminergic and cholinergic neurons; and antibodies to neuromedin U-8 (NMU-8), substance P (SP) and vasoactive intestinal peptide (VIP) were also used. PGP9.5-immunoreactive nerve fibers were observed between jejunal Peyer's patch (PP) follicles and in submucosal ganglia localized at the base of continuous ileal PP. Many ChAT-positive and a few TH-/VMAT-2-immunoreactive neurons or axons adjacent to jejunal and ileal PP were observed. Neurons and fibers from ganglia situated between or at the base of PP follicles manifested robust immunoreactivities to VIP and NMU-8; relatively less SP immunoreactivity was observed at these locations. All neuromedin-U 8-positive neurons observed exhibited immunoreactivity to ChAT as did some VIP-positive neurons. The specific chemical coding of enteric neurons in close apposition to jejunal and ileal PP and the differential localization of neuropeptides within the jejunal and ileal PP are indicative of neuroimmunomodulation at these sites.  相似文献   

9.
Peter Holzer 《Peptides》1992,13(6):1073-1077
Bradykinin (BK) has been reported to have mixed excitatory/inhibitory effects on gastrointestinal motility. The present study examined the mechanism responsible for the inhibition of gastric motor activity caused by intraperitoneal administration of BK. Gastric motor activity was measured by recording the intragastric pressure (IGP) of phenobarbital-anesthetized rats via a transesophageal catheter. To facilitate the study of inhibitory influences, gastric motility was stimulated by neurokinin A (NKA), which on intravenous injection evoked reproducible gastric contractions as measured by a rise of IGP. Intraperitoneal injection of BK (0.1–10 nmol) inhibited the NKA-induced increase in IGP in a dose-dependent manner, and the effect of epigastric administration of BK was not significantly different from that of intraperitoneal administration. The inhibitory effect of intraperitoneal BK on gastric motility was due to an effect on BK2 receptors because it was blocked by prior intraperitoneal injection of the BK2 antagonist Hoe 140. The specificity of this BK antagonist was demonstrated by its inability to antagonize the effect of intraperitoneal hydrochloric acid (HCl), which, like BK, inhibited the NKA-induced gastric contractions. Because the BK- and HCl-induced inhibition of the NKA-induced rise of IGP was abolished by acute removal of the celiac-superior mesenteric ganglion complex, but left unaltered by acute bilateral subdiaphragmatic vagotomy, it is inferred that intraperitoneal BK inhibits gastric motor activity via activation of an autonomic reflex that involves prevertebral ganglia.  相似文献   

10.
The effect of egg albumin (EA) challenge on tracheal tube preparations from sensitized guinea pigs was studied with regard to EA permeability, histamine release and penetrability, and the contractile response of the preparation. We used a plethysmographic method that allowed simultaneous measurement of changes in smooth muscle tension and collection of samples for determination of mediators. Our results clearly show that epithelial damage potentiates the contractile response to histamine, potassium ions, and acetylcholine. Epithelial damage did not alter the maximal contractile response in preparations challenged with high antigen concentrations (EA, 1 mg/ml), but histamine release measured in the perfusate increased substantially. The permeability of the preparations to EA was greater when the epithelium was damaged. No increase in the permeability in response to the EA challenge was observed. The present study has demonstrated that guinea pig airway epithelium constitutes a barrier for both antigen and drugs. We also present a method for recording contractile responses from intact whole tracheal preparations, in which the epithelium can still act as a barrier, as is the case in vivo.  相似文献   

11.
To determine fluid extravasation in the splanchnic vascular bed during anaphylactic hypotension, the mesenteric lymph flow (Q(lym)) was measured in anesthetized rats sensitized with ovalbumin, along with the systemic arterial pressure (P(sa)) and portal venous pressure (P(pv)). When the antigen was injected into the sensitized rats (n = 10), P(sa) decreased from 125 ± 4 to 37 ± 2 mmHg at 10 min with a gradual recovery, whereas P(pv) increased by 16 mmHg at 2 min and returned to the baseline at 10 min. Q(lym) increased 3.3-fold from the baseline of 0.023 ± 0.002 g/min to the peak levels of 0.075 ± 0.009 g/min at 2 min and returned to the baseline within 12 min. The lymph protein concentrations increased after antigen, a finding indicating increased vascular permeability. To determine the role of the P(pv) increase in the antigen-induced increase in Q(lym), P(pv) of the nonsensitized rats (n = 10) was mechanically elevated in a manner similar to that of the sensitized rats by compressing the portal vein near the hepatic hilus. Unexpectedly, P(pv) elevation alone produced a similar increase in Q(lym), with the peak comparable to that of the sensitized rats. This finding aroused a question why the antigen-induced increase in Q(lym) was limited despite the presence of increased vascular permeability. Thus the changes in splanchnic vascular surface area were assessed by measuring the mesenteric arterial flow. The mesenteric arterial flow was decreased much more in the sensitized rats (75%; n = 5) than the nonsensitized P(pv) elevated rats (50%; n = 5). In conclusion, mesenteric lymph flow increases transiently after antigen presumably due to increased capillary pressure of the splanchnic vascular bed via downstream P(pv) elevation and perfusion and increased vascular permeability in anesthetized rats. However, this increased extravasation is subsequently limited by decreases in vascular surface area and filtration pressure.  相似文献   

12.
The present experiment was undertaken to verify if it is possible to impose Pavlovian conditioning on a lung anaphylactic response (LAR) in rats. Two experiments were done. In the 1st, egg albumin (OVA) aerosol inhalation, which induces signs and symptoms of LAR in OVA- sensitized rats, was paired with an audiovisual cue (conditional stimulus, CS). After reexposure to the CS, the signs and symptoms of LAR were quantitatively measured using a scoring system specially developed for this evaluation; the levels of stress response and anxiety were also quantified. Results showed that the rats reexposed to CS only, displayed LAR scores not significantly different from those reexposed to both CS and the antigen; animals of these groups showed significantly higher LAR scores than rats that received no OVA aerosol challenge. High levels of stress and anxiety were observed 30-40 min after the challenge with OVA aerosol. In the 2nd experiment, rats sensitized with OVA and submitted or not to Pavlovian conditioning were observed in the open-field and in the plus maze apparatus in the absence of OVA aerosol but in the presence of the CS; after behavioral observations the animals were sacrificed for serum corticosterone level determination. Both behavioral and biochemical data showed high levels of stress and anxiety in rats for which the antigen was previously paired with the CS; these changes were not observed in animals which received the antigen 24 h after the presentation of the CS (unpaired) or in those exposed to PBS aerosol (the OVA vehicle) only. The present data show not only that LAR can be submitted to Pavlovian conditioning, but also and importantly, that high levels of stress and anxiety are related to the course of LAR.  相似文献   

13.
Summary Para and prevertebral ganglia of the cat were investigated for immunoreactivity (IR) against neurotensin (NT), vasoactive intestinal polypeptide (VIP), substance P (SP) and enkephalin (ENK). Dopamine--hydroxylase- (DBH)-IR was studied in consecutive sections to correlate the distribution of noradrenergic/adrenergic neurons with that of peptidergic nerve fibres and cells.In paravertebral (cervical and thoracic) ganglia, NT-IR or ENK-IR nerve fibres were seen in areas in which DBH-IR fibre networks also occurred. NT-IR varicosities were often in close contact with perikarya of principal ganglionic cells on which DBH-IR varicosities also terminated. Such an association was rarely seen between ENK-IR and DBH-IR fibre baskets. NT-IR and ENK-IR fibre baskets were not found to occur around the same principal ganglionic cell. The distribution of VIP-IR and SP-IR nerve fibres did not coincide with that of DBH-IR fibres.In prevertebral ganglia (celiac-superior mesenteric and inferior mesenteric) DBH-IR or VIP-IR varicosities surrounded the majority of principal ganglionic neurons. ENK-IR or SP-IR fibres were closely associated with only a minority of the neurons; NT-IR networks were rather sparse. Some principal neurons were approached by DBH-IR fibres and by different peptide-IR fibres.In paravertebral ganglia some principal ganglionic cells contained VIP-IR, a few of which were also surrounded by NT-IR varicosities. VIP-IR perikarya in prevertebral ganglia were extremely rare. No NT-IR, SP-IR or ENK-IR principal ganglionic cells were found.Glomus-like paraganglionic cell clusters in paravertebral and prevertebral ganglia exhibited DBH-IR cell bodies. Moreover, the clusters also contained ENK-IR or SP-IR cells. NT-IR varicosities were observed adjacent to clustered paraganglionic cells. Only few singly located paraganglionic cells were NT-IR or ENK-IR.The differential distribution of peptide-IR nerve endings in the investigated ganglia suggests a regulation of impulse transmission that seems to be related to the target organs.Fellow of the Heisenberg foundationSupported by the DFG, grants He 919/5, Re 520/1-2, and SFB 90 Carvas, Heidelberg  相似文献   

14.
Myoelectrical and mechanical activities were chronically recorded by use of nichrome electrodes and miniaturized strain-gage transducers sutured on the serosa of the antrum, the duodenum, and the jejunum. In a first experiment (n = 6 rats) the early (0-6 h) and late (greater than 4 days) effects of streptozotocin (65 mg/kg i.v.) was recorded. In addition, the effect of insulin (1-5 IU/kg) and glucagon (6-200 micrograms/kg) administered intravenously were studied separately each in groups of seven normal and streptozotocin-induced diabetic-fed and fasted rats. The results indicated that within the 30 min following streptozotocin administration there was a significant stimulation of the duodenal and jejunal motility lasting 46 +/- 8 min. When diabetes was established as shown by the basal blood glucose level obtained in those rats (2.30 +/- 0.84 g/L), a progressive decrease of the frequency of the migrating myoelectric complex was observed along with a disorganization of the regular spiking activity phases without disturbing the basal electrical rhythm. Comparing with the basal level, a significant increase in the gastrointestinal motility indexes (MI) appeared both in fasted (p less than 0.01) and fed (p less than 0.05) normal animals, 13.1 +/- 1.6 min after an i.v. injection of 1 IU/kg insulin. Motor effects of glucagon were related to the dose. When used at 25 microgram/kg a disorganization of the spiking activity was observed with a stimulation of the contractile activity in the jejunum. At higher dosages, i.e., 100 micrograms/kg, it induced an immediate and significant decrease of motility at any level tested and lasting up to 20 +/- 7 min. The motility responses to both hormones were lower in diabetic than in normal rats.  相似文献   

15.
We have identified colorectal distension (CRD)-responsive neurons in the anterior cingulate cortex (ACC) and demonstrated that persistence of a heightened visceral afferent nociceptive input to the ACC induces ACC sensitization. In the present study, we confirmed that rostral ACC neurons of sensitized rats [induced by chicken egg albumin (EA)] exhibit enhanced spike responses to CRD. Simultaneous in vivo recording and reverse microdialysis of single ACC neurons showed that a low dose of glutamate (50 microM) did not change basal ACC neuronal firing in normal rats but increased ACC neuronal firing in EA rats from 18 +/- 2 to 32 +/- 3.8 impulses/10 s. A high dose of glutamate (500 microM) produced 1.95-fold and a 4.27-fold increases of ACC neuronal firing in sham-treated rats and in EA rats, respectively, suggesting enhanced glutamatergic transmission in the ACC neurons of EA rats. Reverse microdialysis of the 3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainite receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) reduced basal and abolished CRD-induced ACC neuronal firing in normal rats. In contrast, microdialysis of N-methyl-d-aspartate (NMDA) receptor antagonist AP5 had no effect on ACC neuronal firing in normal rats. However, AP5 produced 86% inhibition of ACC neuronal firing evoked by 50 mmHg CRD in the EA rats. In conclusion, ACC nociceptive transmissions are mediated by glutamate AMPA receptors in the control rats. ACC responses to CRD are enhanced in viscerally hypersensitive rats. The enhancement of excitatory glutamatergic transmission in the ACC appears to mediate this response. Furthermore, NMDA receptors mediate ACC synaptic responses after the induction of visceral hypersensitivity.  相似文献   

16.

Background and Aim

A neuronal pathway participates in the development of portal hypertension: blockade of afferent sensory nerves in portal vein ligated (PVL) rats simultaneously prevents brain cardiovascular regularory nuclei activation, neuromodulator overexpression in superior mesenteric ganglia, sympathetic atrophy of mesenteric innervation and hemodynamic alterations. Here we investigated in PVL rats alterations in neuromodulators and signaling pathways leading to axonal regression or apoptosis in the superior mesenteric ganglia and tested the effects of the stimulation of neuronal proliferation/survival by using a tyrosine kinase receptor A agonist, gambogic amide.

Results

The neuronal pathway was confirmed by an increased neuronal afferent activity at the vagal nodose ganglia and the presence of semaphorin3A in sympathetic pre-ganglionic neurons at the intermediolateral nucleus of the spinal cord of PVL rats. Expression of the active form of tyrosine kinase receptor A (phosphorylated), leading to proliferation and survival signaling, showed a significant reduction in PVL comparing to sham rats. In contrast, the apoptotic and axonal retraction pathways were stimulated in PVL, demonstrated by a significant overexpression of semaphorin 3A and its receptor neuropilin1, together with increases of cleaved caspase7, inactive poly(ADP-ribose) polymerase and Rho kinase expression. Finally, the administration of gambogic amide in PVL rats showed an amelioration of hemodynamic alterations and sympathetic atrophy, through the activation of survival pathways together with the inhibition of apoptotic cascades and Rho kinase mediated axonal regression.

Conclusion

The adrenergic alteration and sympathetic atrophy in mesenteric vessels during portal hypertension is caused by alterations on neuromodulation leading to post-ganglionic sympathetic regression and apoptosis and contributing to splanchnic vasodilation.  相似文献   

17.
Penetration of the gut epithelial barrier by intact luminal antigen is necessary for immunologically mediated pathophysiology in the context of food allergy. We investigated if glucagon-like peptide-2 (GLP-2) could affect immediate hypersensitivity and late-phase allergic inflammation in a murine model. Mice were sensitized to horseradish peroxidase (HRP); studies were conducted 14 days later. Mice were treated with 5 microg GLP-2 subcutaneously 4 h before antigen challenge. For immediate hypersensitivity, jejunal segments in Ussing chambers were challenged by luminal HRP antigen. GLP-2 treatment reduced the uptake of HRP and the antigen-induced secretory response after luminal challenge. GLP-2 appears to reduce macromolecular uptake independent of the CD23-mediated enhanced antigen uptake pathway. For the late phase, mice were gavaged with antigen, and 48 h later the function and histology of the jejunum were examined. GLP-2 prevented the usual prolonged permeability defect and reduced the number of inflammatory cells in the mucosa. Our studies demonstrate that a single treatment of sensitized mice with GLP diminishes both immediate and late-phase hypersensitivity reactions characteristic of food allergy by inhibiting transepithelial uptake of antigen.  相似文献   

18.
To ascertain the role of IL-4 in aversion to antigen induced by food allergy, wild type and IL-4 deficient BALB/c mice were sensitized with ovalbumin and challenged orally with egg white. Sensitized wild type mice had increased production of IL-4 by spleen and mesenteric lymph node cells in vitro, higher levels of serum anti-ovalbumin IgE and IgG1, aversion to ingestion of the antigen and loss of body weight after continuous oral challenge. Intestinal changes in wild type sensitized mice included eosinophil infiltration and increased mucus production. The IL-4 deficiency impaired the development of food allergy and the aversion to antigen, suggesting the involvement of the antigen specific antibodies. When IL-4 deficient mice received serum from sensitized wild type donors, the aversion was restored. These results indicate that production of IL-4 and specific IgE/IgG1 antibodies correlate with aversion to antigen induced by food allergy in mice.  相似文献   

19.
Summary In rats, the distribution of nerve structures staining for NADPH-diaphorase, and showing immunoreactivities for nitric oxide synthase (NOS), tyrosine hydroxylase and various neuropeptides was studied in sensory ganglia (dorsal root, nodose and trigeminal ganglia), in sympathetic ganglia (superior cervical, stellate, coeliac-superior and inferior mesenteric ganglia), parasympathetic ganglia (sphenopalatine, submandibular, sublingual and otic ganglia), and in the mixed parasympathetic/ sympathetic ganglia (major pelvic ganglia). The coincidence of neuronal cell bodies with strong NOS-immunoreactivity and strong NADPH diaphorase reactivity was almost total. The relative proportions of NOS-immunoreactive nerve cell bodies were largest in parasympathetic ganglia and major pelvic ganglia followed by sensory ganglia. In sympathetic ganglia no NOS-immunoreactive neuronal cell bodies could be detected. In parasympathetic and major pelvic ganglia, there was a very significant neuronal co-localization of immunoreactivities for NOS and vasoactive intestinal polypeptide (VIP). This was almost total in major pelvic ganglia, in which NOS-/VIP-immunoreactive nerve cell bodies were separate from sympathetic (tyrosine hydroxylase-/neuropeptide Y-immunoreactive), suggesting that NOS-/VIP-immuno-reactive neurons might also be parasympathetic.  相似文献   

20.
Extracellular signal-regulated kinases, protein kinase B/Akt and cyclase response element-binding protein play important roles in drug-induced neuroadaptations. Acute psychostimulant exposure rapidly alters the phosphorylation of these proteins in the striatum but less is known about their responses to repeated stimulant administration. In this study the phosphorylated state of these proteins in rat striatum was analyzed by immunoblotting 15 min and 2 h after amphetamine (AMPH)-induced behavioral sensitization. Two weeks after the last dose of 5 mg/kg, i.p. AMPH once daily for 5 days, rats were challenged with 1 mg/kg, i.p. AMPH or saline and sacrificed 15 min or 2 h later. Sensitization to AMPH-induced behavioral activity was observed in AMPH pre-treated rats after AMPH on the challenge day. Phosphorylation of all three proteins was significantly greater 15 min after AMPH in AMPH-pre-treated than in saline-pre-treated rats. Two hours after AMPH challenge in AMPH-pre-treated rats, phospho-extracellular signal-regulated kinase and phospho-cAMP response element-binding protein immunoreactivity was still significantly elevated but not after AMPH injection in saline-pre-treated rats. In contrast, phospho-Akt was down-regulated to the same extent 2 h after acute AMPH or repeated AMPH with an AMPH challenge. These data implicate differential regulation of phospho-extracellular signal-regulated kinase, phospho-cAMP response element-binding protein versus phospho-Akt in sensitized responses to AMPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号