首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We isolated and cultured fetal distal lung epithelial (FDLE) cells from 17- to 19-day rat fetuses and assayed for anion secretion in Ussing chambers. With symmetrical Ringer solutions, basal short-circuit currents (I(sc)) and transepithelial resistances were 7.9 +/- 0.5 microA/cm(2) and 1,018 +/- 73 Omega.cm(2), respectively (means +/- SE; n = 12). Apical amiloride (10 microM) inhibited basal I(sc) by approximately 50%. Subsequent addition of forskolin (10 microM) increased I(sc) from 3.9 +/- 0.63 microA/cm(2) to 7.51 +/- 0.2 microA/cm(2) (n = 12). Basolateral bumetanide (100 microM) decreased forskolin-stimulated I(sc) from 7.51 +/- 0.2 microA/cm(2) to 5.62 +/- 0.53, whereas basolateral 4,4'-dinitrostilbene-2,2'-disulfonate (5 mM), an inhibitor of HCO secretion, blocked the remaining I(sc). Forskolin addition evoked currents of similar fractional magnitudes in symmetrical Cl(-)- or HCO(-)(3)-free solutions; however, no response was seen using HCO(-)(3)- and Cl(-)-free solutions. The forskolin-stimulated I(sc) was inhibited by glibenclamide but not apical DIDS. Glibenclamide also blocked forskolin-induced I(sc) across monolayers having nystatin-permeablized basolateral membranes. Immunolocalization studies were consistent with the expression of cystic fibrosis transmembrane conductance regulator (CFTR) protein in FDLE cells. In aggregate, these findings indicate the presence of cAMP-activated Cl(-) and HCO(-)(3) secretion across rat FDLE cells mediated via CFTR.  相似文献   

2.
Pathological rates of gallbladder salt and water transport may promote the formation of cholesterol gallstones. Because prairie dogs are widely used as a model of this event, we characterized gallbladder ion transport in animals fed control chow by using electrophysiology, ion substitution, pharmacology, isotopic fluxes, impedance analysis, and molecular biology. In contrast to the electroneutral properties of rabbit and Necturus gallbladders, prairie dog gallbladders generated significant short-circuit current (I(sc); 171 +/- 21 microA/cm(2)) and lumen-negative potential difference (-10.1 +/- 1.2 mV) under basal conditions. Unidirectional radioisotopic fluxes demonstrated electroneutral NaCl absorption, whereas the residual net ion flux corresponded to I(sc). In response to 2 microM forskolin, I(sc) exceeded 270 microA/cm(2), and impedance estimates of the apical membrane resistance decreased from 200 Omega.cm(2) to 13 Omega.cm(2). The forskolin-induced I(sc) was dependent on extracellular HCO(3)(-) and was blocked by serosal 4,4'-dinitrostilben-2,2'-disulfonic acid (DNDS) and acetazolamide, whereas serosal bumetanide and Cl(-) ion substitution had little effect. Serosal trans-6-cyano-4-(N-ethylsulfonyl-N-methylamino)-3-hydroxy-2,2-dimethyl-chroman and Ba(2+) reduced I(sc), consistent with the inhibition of cAMP-dependent K(+) channels. Immunoprecipitation and confocal microscopy localized cystic fibrosis transmembrane conductance regulator protein (CFTR) to the apical membrane and subapical vesicles. Consistent with serosal DNDS sensitivity, pancreatic sodium-bicarbonate cotransporter protein pNBC1 expression was localized to the basolateral membrane. We conclude that prairie dog gallbladders secrete bicarbonate through cAMP-dependent apical CFTR anion channels. Basolateral HCO(3)(-) entry is mediated by DNDS-sensitive pNBC1, and the driving force for apical anion secretion is provided by K(+) channel activation.  相似文献   

3.
Bile acid epimers and side-chain homologues are present in the human colon. To test whether such bile acids possess secretory activity, cultured T84 colonic epithelial cells were used to quantify the secretory properties of synthetic epimers and homologues of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). In our study, chloride secretion was measured as changes in short-circuit current (DeltaI(sc), in microA/cm2) with the use of voltage-clamped monolayers of T84 cells mounted in Ussing chambers. Bile acids were added at 0.5 mM, a concentration that did not alter transepithelial resistance. Data were expressed as peak DeltaI(sc) (means +/- SD). When added bilaterally, DCA stimulated a DeltaI(sc) response of 15.7 +/- 12.5 microA/cm2. The 12beta-OH epimer of DCA was less potent (DeltaI(sc) = 8.0 +/- 1.7 microA/cm2), whereas its 3beta-OH epimer had no effect. CDCA stimulated secretion (DeltaI(sc) = 8.2 +/- 5.5 microA/cm2), whereas both its 7beta-OH and 3beta-OH epimers were inactive, as was lithocholic acid. HomoDCA (1 additional side-chain carbon) was active (DeltaI(sc) = 7.8 +/- 4.8 microA/cm2), whereas norDCA (1 fewer carbon) and dinorDCA (2 fewer carbons) were not. Taurine conjugates of DCA and CDCA stimulated secretion (DeltaI(sc) = 12.3 +/- 7.5 and 8.8 +/- 4.8 microA/cm2, respectively) from the basolateral side but not the apical side. Uptake of taurine conjugates from the basolateral but not the apical side was shown by mass spectrometry. These studies indicate marked structural specificity for bile acid-induced chloride secretion and show that modification of bile acid structure by colonic bacteria modulates the secretory properties of these endogenous secretagogues.  相似文献   

4.
The regulated Cl(-) secretory apparatus of T84 cells responds to several pharmacological agents via different second messengers (Ca(2+), cAMP, cGMP). However, information about water movements in T84 cells has not been available. In the absence of osmotic or chemical gradient, we observed a net secretory transepithelial volume flux (J(w) = -0.16 +/- 0.02 microl.min(-1).cm(-2)) in parallel with moderate short-circuit current values (I(sc) = 1.55 +/- 0.23 microA/cm(2)). The secretory J(w) reversibly reverted to an absorptive value when A-23187 was added to the serosal bath. Vasoactive intestinal polypeptide increased I(sc), but, unexpectedly, J(w) was not affected. Bumetanide, an inhibitor of basolateral Na(+)-K(+)-2Cl(-) cotransporter, completely blocked secretory J(w) with no change in I(sc). Conversely, serosal forskolin increased I(sc), but J(w) switched from secretory to absorptive values. Escherichia coli heat-stable enterotoxin increased secretory J(w) and I(sc). No difference between the absorptive and secretory unidirectional Cl(-) fluxes was observed in basal conditions, but after STa stimulation, a significant net secretory Cl(-) flux developed. We conclude that, under these conditions, the presence of secretory or absorptive J(w) values cannot be shown by I(sc) and ion flux studies. Furthermore, RT-PCR experiments indicate that aquaporins were not expressed in T84 cells. The molecular pathway for water secretion appears to be transcellular, moving through the lipid bilayer or, as recently proposed, through water-solute cotransporters.  相似文献   

5.
Ion transport and the electric profile of distal airways of sheep lungs were studied in a miniature polypropylene chamber with a 1-mm aperture. Small airways with an inner diameter < 1 mm were isolated, opened longitudinally, and then mounted as a flat sheet onto the 1-mm aperture where it was glued and secured with an O-ring. Both sides of the tissue were bathed with identical physiological solutions at 37 degrees C and oxygenated. Pooled data from 27 distal airways showed an inner airway diameter of 854 +/- 22 (SE) microm and a transepithelial potential difference (PD) of 1.86 +/- 0.29 mV, lumen negative. Short-circuit current (I(sc)) was 25 +/- 3.5 microA/cm(2), tissue resistance was 96 +/- 14 Omega, and conductance was 15.2 +/- 1.7 mS/cm(2). At baseline, amiloride-sensitive Na transport accounted for 51% of I(sc) (change in I(sc) = 9.7 +/- 2.6 microA/cm(2); n = 8 airways), corresponding to 0.36 microeq. cm(-2). h(-1). Treatment with 0.1 mM bumetanide did not reduce the I(sc) (n = 5 airways). Exposure to 1 microM Ca ionophore A-23187 raised the I(sc) by 9 microA/cm(2) (47%; P < 0.03; n = 6 airways). The latter effect was blunted by bumetanide. Carbachol at 1 microM provoked a biphasic response, an initial rapid rise in I(sc) followed by a decline (n = 3 airways). There was no significant increase in PD or I(sc) in response to isoproterenol or dibutyryl cAMP. The data suggest that Na absorption constitutes at least 50% of baseline transport activity. Cl or other anion secretion such as HCO(3) appears to be present and could be stimulated by raising intracellular Ca.  相似文献   

6.
Previous studies have demonstrated that cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-mediated Cl(-)channel found in most epithelia including reproductive tract, could be regulated by various culture conditions. The present study further investigated the effect of phenol red, a pH indicator widely used in growth medium, and steroid hormones, present in the supplement fetal bovine serum (FBS), on primary cultured endometrial epithelial cells by monitoring ion channel activities using the short-circuit current technique. When compared to the results obtained with normal medium supplemented with regular FBS, the forskolin-stimulated I(SC), presumably mediated by CFTR, obtained in phenol red-free medium was significantly reduced, from 16.95+/-1.53 microA/cm(2)(control) to 9.72+/-0.89 microA/cm(2)(medium without phenol red, P< 0.05). The forskolin-activated I(SC)was further attenuated to 5.29+/-0.46 microA/cm(2)in the phenol red-free medium when supplemented with charcoal/ dextran-treated FBS where steroid hormones were removed. Our data suggest that phenol red and steroid hormones present in culture medium and FBS supplement, respectively, may somehow upregulate CFTR expression in vitro. Our study demonstrates the need for carefully choosing the culture media and supplements due to the effect of steroid hormones.  相似文献   

7.
Fibrates are peroxisome proliferator-activated receptor-alpha (PPARalpha) ligands in widespread clinical use to lower plasma triglyceride levels. We investigated the effect of fenofibrate and clofibrate on ion transport in mouse intestine and in human T84 colonic adenocarcinoma cells through the use of short-circuit current (I(sc)) and ion flux analysis. In mice, oral administration of fenofibrate produced a persistent inhibition of cAMP-stimulated electrogenic Cl(-) secretion by isolated jejunum and colon without affecting electroneutral fluxes of (22)Na(+) or (86)Rb(+) (K(+)) across unstimulated colonic mucosa. When applied acutely to isolated mouse intestinal mucosa, 100 microM fenofibrate inhibited cAMP-stimulated I(sc) within 5 min. In T84 cells, fenofibrate rapidly inhibited approximately 80% the Cl(-) secretory responses to forskolin (cAMP) and to heat stable enterotoxin STa (cGMP) without affecting the response to carbachol (Ca(2+)). Both fenofibrate and clofibrate inhibited cAMP-stimulated I(sc) with an IC(50) approximately 1 muM, whereas other PPARalpha activators (gemfibrozil and Wy-14,643) were without effect. Membrane permeabilization experiments on T84 cells indicated that fenofibrate inhibits basolateral cAMP-stimulated K(+) channels (putatively KCNQ1/KCNE3) without affecting Ca(2+)-stimulated K(+) channel activity, whereas clofibrate inhibits both K(+) pathways. Fenofibrate had no effect on apical cAMP-stimulated Cl(-) channel activity. Patch-clamp analysis of HEK-293T cells confirmed that 100 microM fenofibrate rapidly inhibits K(+) currents associated with ectopic expression of human KCNQ1 with or without the KCNE3 beta-subunit. We conclude that fenofibrate inhibits intestinal cAMP-stimulated Cl(-) secretion through a nongenomic mechanism that involves a selective inhibition of basolateral KCNQ1/KCNE3 channel complexes. Our findings raise the prospect of fenofibrate as a safe and effective antidiarrheal agent.  相似文献   

8.
Enterocytes maintain fluid-electrolyte homeostasis by keeping a tight barrier and regulating ion channels. Carbon monoxide (CO), a product of heme degradation, modulates electrolyte transport in kidney and lung epithelium, but its role in regulating intestinal fluid-electrolyte homeostasis has not been studied. The major source of endogenous CO formation comes from the degradation of heme via heme oxygenase. We hypothesized that heme activates electrolyte transport in intestinal epithelial cells. Basolateral hemin treatment increased baseline Caco-2 cell short-circuit currents (I(sc)) twofold (control = 1.96 +/- 0.14 microA/cm(2) vs. hemin = 4.07 +/- 0.16 microA/cm(2), P < 0.01); apical hemin had no effect. Hemin-induced I(sc) was caused by Cl- secretion because it was inhibited in Cl- -free medium, with ouabain, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), or DIDS. Apical electrogenic Na+ channel inhibitor benzamil had no effect on hemin-induced I(sc). Hemin did not alter the ability of Caco-2 cells to respond maximally to forskolin, but a soluble guanylate cyclase inhibitor, [1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) inhibited the effects of hemin. A CO-releasing molecule, tricarbonyldichlororuthenium II, induced active Cl- secretion that was also inhibited with ODQ. We conclude that hemin induces active Cl- secretion in Caco-2 cells via a cGMP-dependent pathway. These effects are probably the consequence of CO formation. Heme and CO may be important regulators of intestinal fluid-electrolyte homeostasis.  相似文献   

9.
The effect of baicalein on mucosal ion transport in the rat distal colon was investigated in Ussing chambers. Mucosal addition of baicalein (1-100 microM) elicited a concentration-dependent short-circuit current (I(sc)) response. The increase in I(sc) was mainly due to Cl(-) secretion. The presence of mucosal indomethacin (10 microM) significantly reduced both the basal and subsequent baicalein-evoked I(sc) responses. The baicalein-induced I(sc) were inhibited by mucosal application of diphenylamine-2-carboxylic acid (100 microM) and glibenclamide (500 microM) and basolateral application of chromanol 293B (30 microM), a blocker of K(v)LQT1 channels and Ba(2+) ions (5 mM). Treatment of the colonic mucosa with baicalein elicited a threefold increase in cAMP production. Pretreating the colonic mucosa with carbachol (100 microM, serosal) but not thapsigargin (1 microM, both sides) abolished the baicalein-induced I(sc). Addition of baicalein subsequent to forskolin induced a further increase in I(sc). These results indicate that the baicalein evoked Cl(-) secretion across rat colonic mucosa, possibly via a cAMP-dependent pathway. However, the action of baicalein cannot be solely explained by its cAMP-elevating effect. Baicalein may stimulate Cl(-) secretion via a cAMP-independent pathway or have a direct effect on cystic fibrosis transmembrane conductance regulator.  相似文献   

10.
Effects of cyclooxygenase (COX) inhibitors on transport parameters of the frog corneal epithelium were studied. Epithelial cells of the intact cornea were impaled with microelectrodes. Under short-circuit current (I(sc)) conditions, 10(-4) M ibuprofen (IBU) (non-specific COX inhibitor) or 5 x 10(-5) M rofecoxib (COX-2 inhibitor) were added to the tear solution. With ibuprofen, I(sc) decreased by 1.0 from 3.1 microA/cm2; intracellular potential, V(o), depolarized by 14.2 from -56.9 mV; IBU did not affect the transepithelial conductance, g(t), or the apical membrane fractional resistance, fR(o). With rofecoxib, I(sc) decreased by 0.9 from 4.3 microA/cm2; V(o) depolarized by 18 from -62.4 mV; g(t) significantly increased by 0.03 from 0.37 ms/cm2; and fR(o) decreased by 12 from 50. Basolateral membrane K+ and apical membrane Cl- partial conductances were studied by the ion substitution method. Depolarization of V(o) by an increase in stromal K+ from 4 to 79 mM was smaller with IBU (17.5 mV) or rofecoxib (19.2 mV) than without the inhibitors (29.1 and 29.3 mV, respectively). Depolarization of V(o), by a decrease in tear Cl- from 81 to 8.1 mM, was abolished by the COX inhibitors. Decrease in I(sc) and V(o) can be explained by a decrease in the K+ and Cl-? conductances. Experiments with amphotericin B ruled out a major effect of the inhibitors on the Na+/K+ ATPase pump.  相似文献   

11.
cAMP induces both active Cl(-) and active K(+) secretion in mammalian colon. It is generally assumed that a mechanism for K(+) exit is essential to maintain cells in the hyperpolarized state, thus favoring a sustained Cl(-) secretion. Both Kcnn4c and Kcnma1 channels are located in colon, and this study addressed the questions of whether Kcnn4c and/or Kcnma1 channels mediate cAMP-induced K(+) secretion and whether cAMP-induced K(+) secretion provides the driving force for Cl(-) secretion. Forskolin (FSK)-enhanced short-circuit current (indicator of net electrogenic ion transport) and K(+) fluxes were measured simultaneously in colonic mucosa under voltage-clamp conditions. Mucosal Na(+) orthovanadate (P-type ATPase inhibitor) inhibited active K(+) absorption normally present in rat distal colon. In the presence of mucosal Na(+) orthovanadate, serosal FSK induced both K(+) and Cl(-) secretion. FSK-induced K(+) secretion was 1) not inhibited by either mucosal or serosal 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34; a Kcnn4 channel blocker), 2) inhibited (92%) by mucosal iberiotoxin (Kcnma1 channel blocker), and 3) not affected by mucosal cystic fibrosis transmembrane conductance regulator inhibitor (CFTR(inh)-172). By contrast, FSK-induced Cl(-) secretion was 1) completely inhibited by serosal TRAM-34, 2) not inhibited by either mucosal or serosal iberiotoxin, and 3) completely inhibited by mucosal CFTR(inh)-172. These results indicate that cAMP-induced colonic K(+) secretion is mediated via Kcnma1 channels located in the apical membrane and most likely contributes to stool K(+) losses in secretory diarrhea. On the other hand, cAMP-induced colonic Cl(-) secretion requires the activity of Kcnn4b channels located in the basolateral membrane and is not dependent on the concurrent activation of apical Kcnma1 channels.  相似文献   

12.
We studied the functional importance of the colonic guanylyl cyclase C (GCC) receptor in GCC receptor-deficient mice. Mice were anesthetized with pentobarbital sodium, and colon segments were studied in Ussing chambers in HCO3- Ringer under short-circuit conditions. Receptor-deficient mouse proximal colon exhibited similar net Na+ absorption, lower net Cl- absorption, and a negative residual ion flux (J(R)), indicating net HCO3- absorption compared with that in normal mice. In normal mouse proximal colon, mucosal addition of 50 nM Escherichia coli heat-stable enterotoxin (STa) increased the serosal-to-mucosal flux of Cl- (J(s-->m)(Cl)) and decreased net Cl- flux (J(net)(Cl)) accompanied by increases in short-circuit current (I(sc)), potential difference (PD), and tissue conductance (G). Serosal STa had no effect. In distal colon neither mucosal nor serosal STa affected ion transport. In receptor-deficient mice, neither mucosal nor serosal 500 nM STa affected electrolyte transport in proximal or distal colon. In these mice, 1 mM 8-bromo-cGMP produced changes in proximal colon J(s-->m)(Cl) and J(net)(Cl), I(sc), PD, G, and J(R) similar to mucosal STa addition in normal mice. We conclude that the GCC receptor is necessary in the mouse proximal colon for a secretory response to mucosal STa.  相似文献   

13.
The development of a culture of the normal mammalian jejunum motivated this work. Isolated crypt cells of the dog jejunum were induced to form primary cultures on Snapwell filters. Up to seven subcultures were studied under the electron microscope and in Ussing chambers. Epithelial markers were identified by RT-PCR, Western blot, and immunofluorescent staining. Confluent monolayers exhibit a dense apical brush border, basolateral membrane infoldings, desmosomes, and tight junctions expressing zonula occludens-1, occludin-1, and claudin-3 and -4. In OptiMEM medium fortified with epidermal growth factor, hydrocortisone, and insulin, monolayer transepithelial voltage was -6.8 mV (apical side), transepithelial resistance was 1,050 Omega.cm(2), and short-circuit current (I(sc)) was 8.1 microA/cm(2). Transcellular and paracellular resistances were estimated as 14.8 and 1.1 kOmega.cm(2), respectively. Serosal ouabain reduced voltage and current toward zero, as did apical amiloride. The presence of mRNA of alpha-epithelial Na(+) channel (ENaC) was confirmed. Na-d-glucose cotransport was identified with an antibody to Na(+)-glucose cotransporter (SGLT) 1. The unidirectional mucosa-to-serosa Na(+) flux (19 nmol.min(-1).cm(-2)) was two times as large as the reverse flux, and net transepithelial Na(+) flux was nearly double the amiloride-sensitive I(sc). In plain Ringer solution, the amiloride-sensitive I(sc) went toward zero. Under these conditions plus mucosal amiloride, serosal dibutyryl-cAMP elicited a Cl(-)-dependent I(sc) consistent with the stimulation of transepithelial Cl(-) secretion. In conclusion, primary cultures and subcultures of the normal mammalian jejunum form polarized epithelial monolayers with 1) the properties of a leaky epithelium, 2) claudins specific to the jejunal tight junction, 3) transepithelial Na(+) absorption mediated in part by SGLT1 and ENaC, and 4) electrogenic Cl(-) secretion activated by cAMP.  相似文献   

14.
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is an important pathway for duodenal mucosal bicarbonate secretion. Duodenal biopsies from CF patients secrete bicarbonate in response to heat-stable enterotoxin from Escherichia coli (STa) but not cAMP. To explore the mechanism of STa-induced bicarbonate secretion in CF more fully, we examined the role of CFTR in STa-stimulated duodenal bicarbonate secretion in mice. In vivo, the duodenum of CFTR (-/-) or control mice was perfused with forskolin (10(-4) M), STa (10(-7) M), uroguanylin (10(-7) M), 8-bromoguanosine 3',5'-cGMP (8-Br-cGMP) (10(-3) M), genistein (10(-6) M) plus STa, or herbimycin A (10(-6) M) plus STa. In vitro, duodenal mucosae were voltage-clamped in Ussing chambers, and bicarbonate secretion was measured by pH-stat. The effect of genistein, DIDS (10(-4) M), and chloride removal was also studied in vitro. Control, but not CF, mice produced a significant increase in duodenal bicarbonate secretion after perfusion with forskolin, uroguanylin, or 8-Br-cGMP. However, both control and CF animals responded to STa with significant increases in bicarbonate output. Genistein and herbimycin A abolished this response in CF mice but not in controls. In vitro, STa-stimulated bicarbonate secretion in CF tissues was inhibited by genistein, DIDS, and chloride-free conditions, whereas bicarbonate secretion persisted in control mice. In the CF duodenum, STa can stimulate bicarbonate secretion via tyrosine kinase activity resulting in apical Cl(-)/HCO(3)(-) exchange. Further studies elucidating the intracellular mechanisms responsible for such non-CFTR mediated bicarbonate secretion may lead to important therapies for CF.  相似文献   

15.
The chemical solvent tetrahydrofuran (THF) increases short-circuit current (I(sc)) in renal epithelia endogenously expressing the cystic fibrosis transmembrane conductance regulator (CFTR). To understand how THF increases I(sc), we employed the Ussing chamber and patch-clamp techniques to study cells expressing recombinant human CFTR. THF increased I(sc) in Fischer rat thyroid (FRT) epithelia expressing wild-type CFTR with half-maximal effective concentration (K(D)) of 134 mM. This THF-induced increase in I(sc) was enhanced by forskolin (10 microM), inhibited by the PKA inhibitor H-89 (10 microM) and the thiazolidinone CFTR(inh)-172 (10 microM) and attenuated greatly in FRT epithelia expressing the cystic fibrosis mutants F508del- and G551D-CFTR. By contrast, THF (100 mM) was without effect on untransfected FRT epithelia, while other solvents failed to increase I(sc) in FRT epithelia expressing wild-type CFTR. In excised inside-out membrane patches, THF (100 mM) potentiated CFTR Cl(-) channels open in the presence of ATP (1 mM) alone by increasing the frequency of channel openings without altering their duration. However, following the phosphorylation of CFTR by PKA (75 nM), THF (100 mM) did not potentiate channel activity. Similar results were obtained with the triangle upR-S660A-CFTR Cl(-) channel that is not regulated by PKA-dependent phosphorylation and using 2'deoxy-ATP, which gates wild-type CFTR more effectively than ATP. Our data suggest that THF acts directly on CFTR to potentiate channel gating, but that its efficacy is weak and dependent on the phosphorylation status of CFTR.  相似文献   

16.
A synthetic, channel-forming peptide, derived from the alpha-subunit of the glycine receptor (M2GlyR), has been synthesized and modified by adding four lysine residues to the NH(2) terminus (N-K(4)-M2GlyR). In Ussing chamber experiments, apical N-K(4)-M2GlyR (250 microM) increased transepithelial short-circuit current (I(sc)) by 7.7 +/- 1.7 and 10.6 +/- 0.9 microA/cm(2) in Madin-Darby canine kidney and T84 cell monolayers, respectively; these values are significantly greater than those previously reported for the same peptide modified by adding the lysines at the COOH terminus (Wallace DP, Tomich JM, Iwamoto T, Henderson K, Grantham JJ, and Sullivan LP. Am J Physiol Cell Physiol 272: C1672-C1679, 1997). N-K(4)-M2GlyR caused a concentration-dependent increase in I(sc) (k([1/2]) = 190 microM) that was potentiated two- to threefold by 1-ethyl-2-benzimidazolinone. N-K(4)-M2GlyR-mediated increases in I(sc) were insensitive to changes in apical cation species. Pharmacological inhibitors of endogenous Cl(-) conductances [glibenclamide, diphenylamine-2-dicarboxylic acid, 5-nitro-2-(3-phenylpropylamino)benzoic acid, 4,4'-dinitrostilben-2,2'-disulfonic acid, indanyloxyacetic acid, and niflumic acid] had little effect on N-K(4)-M2GlyR-mediated I(sc). Whole cell membrane patch voltage-clamp studies revealed an N-K(4)-M2GlyR-induced anion conductance that exhibited modest outward rectification and modest time- and voltage-dependent activation. Planar lipid bilayer studies yielded results indicating that N-K(4)-M2GlyR forms a 50-pS anion conductance with a k([1/2]) for Cl(-) of 290 meq. These results indicate that N-K(4)-M2GlyR forms an anion-selective channel in epithelial monolayers and shows therapeutic potential for the treatment of hyposecretory disorders such as cystic fibrosis.  相似文献   

17.
18.
The possible existence of transepithelial bicarbonate transport across the isolated bovine ciliary body was investigated by employing a chamber that allows for the measurement of unidirectional, radiolabeled fluxes of CO2 + HCO. No net flux of HCO was detected. However, acetazolamide (0.1 mM) reduced the simultaneously measured short-circuit current (I(sc)). In other experiments in which (36)Cl- was used, a net Cl- flux of 1.12 microeq. h(-1). cm(-2) (30 microA/cm(2)) in the blood-to-aqueous direction was detected. Acetazolamide, as well as removal of HCO from the aqueous bathing solution, inhibited the net Cl- flux and I(sc). Because such removal should increase HCO diffusion toward the aqueous compartment and increase the I(sc), this paradoxical effect could result from cell acidification and partial closure of Cl- channels. The acetazolamide effect on Cl- fluxes can be explained by a reduction of cellular H+ and HCO (generated from metabolic CO2 production), which exchange with Na+ and Cl- via Na+/H+ and Cl-/HCO exchangers, contributing to the net Cl- transport. The fact that the net Cl- flux is about three times larger than the I(sc) is explained with a vectorial model in which there is a secretion of Na+ and K+ into the aqueous humor that partially subtracts from the net Cl- flux. These transport characteristics of the bovine ciliary epithelium suggest how acetazolamide reduces intraocular pressure in the absence of HCO transport as a driving force for fluid secretion.  相似文献   

19.
The aim of the present study was to investigate whether carbon monoxide (CO) induces changes in ion transport across the distal colon of rats and to study the mechanisms involved. In Ussing chamber experiments, tricarbonyldichlororuthenium(II) dimer (CORM-2), a CO donor, evoked a concentration-dependent increase in short-circuit current (I(sc)). A maximal response was achieved at a concentration of 2.5·10(-4) mol/l. Repeated application of CORM-2 resulted in a pronounced desensitization of the tissue. Anion substitution experiments suggest that a secretion of Cl(-) and HCO(3)(-) underlie the CORM-2-induced current. Glibenclamide, a blocker of the apical cystic fibrosis transmembrane regulator channel, inhibited the I(sc) induced by the CO donor. Similarly, bumetanide, a blocker of the basolateral Na(+)-K(+)-2Cl(-) cotransporter, combined with 4-acetamido-4'-isothiocyanato-stilbene-2,2'-disulfonic acid sodium salt, an inhibitor of the basolateral Cl(-)/HCO(3)(-) exchanger, inhibited the CORM-2-induced I(sc). Membrane permeabilization experiments indicated an activation of basolateral K(+) and apical Cl(-) channels by CORM-2. A partial inhibition by the neurotoxin, tetrodotoxin, suggests the involvement of secretomotor neurons in this response. In imaging experiments at fura-2-loaded colonic crypts, CORM-2 induced an increase of the cytosolic Ca(2+) concentration. This increase depended on the influx of extracellular Ca(2+), but not on the release of Ca(2+) from intracellular stores. Both enzymes for CO production, heme oxygenase I and II, are expressed in the colon as observed immunohistochemically and by RT-PCR. Consequently, endogenous CO might be a physiological modulator of colonic ion transport.  相似文献   

20.
The anterior stomach of larval Aedes aegypti was isolated and perfused via two pipettes. For transepithelial voltage (V(te)) measurement, the inflow pipette and the bath were connected via agar bridges to calomel electrodes. For voltage-clamping, the lumen of the tissue contained an Ag/AgCl wire held by the outflow pipette, and the preparation was placed in a bath within a spiral of Ag/AgCl wire. After equilibrating the tissue in mosquito saline on both sides, a V(te) of -8+/-1 mV was measured (+/-S.E.M., N=32). Current-voltage curves (+/-100 mV) demonstrated ohmic behaviour of the epithelium. Short-circuiting resulted in a current (I(sc)) of 103+/-16 microA cm(-2) and a mean transepithelial conductance (G(te)) of 11.8+/-1.3 mS cm(-2) (+/-S.E.M., N=32). A Yonath-Civan plot of G(te) of individual preparations over the corresponding I(sc) resulted in a straight line (r(2)=0.8422), indicating that the difference in I(sc) of individual preparations is mainly based on different transcellular conductances (G(c)). This analysis allowed to estimate the mean leak conductance (G(l) approximately 3.9 mS cm(-2)) and the mean transcellular electromotive force (E(c) approximately 13 mV). After administering 0.2 micromol L(-1) serotonin, I(sc) and G(te) significantly increased, to 457+/-49 microA cm(-2) and to 21.3+/-2.3 mS cm(-2) (+/-S.E.M., N=31, P<0.05), respectively. The Yonath-Civan plot after serotonin resulted again in a straight line (r(2)=0.8219), indicating a mean G(l) of about 1 mS cm(-2) and a mean E(c) of about 22 mV. Dinitrophenol (2.5 mmol L(-1)) almost abolished I(sc) and significantly reduced G(te) (N=6). Concanamycin A (100 micromol L(-1)) reduced I(sc) by more than 90% without significantly affecting G(te).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号