首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
A marked sexual dimorphism exists in healthy individuals in the pattern of blunted neuroendocrine and metabolic responses following antecedent stress. It is unknown whether significant sex-related counterregulatory differences occur during prolonged moderate exercise after antecedent hypoglycemia in type 1 diabetes mellitus (T1DM). Fourteen patients with T1DM (7 women and 7 men) were studied during 90 min of euglycemic exercise at 50% maximal O(2) consumption after two 2-h episodes of previous-day euglycemia (5.0 mmol/l) or hypoglycemia of 2.9 mmol/l. Men and women were matched for age, glycemic control, duration of diabetes, and exercise fitness and had no history or evidence of autonomic neuropathy. Exercise was performed during constant "basal" intravenous infusion of regular insulin (1 U/h) and a 20% dextrose infusion, as needed to maintain euglycemia. Plasma glucose and insulin levels were equivalent in men and women during all exercise and glucose clamp studies. Antecedent hypoglycemia produced a relatively greater (P < 0.05) reduction of glucagon, epinephrine, norepinephrine, growth hormone, and metabolic (glucose kinetics) responses in men compared with women during next-day exercise. After antecedent hypoglycemia, endogenous glucose production (EGP) was significantly reduced in men only, paralleling a reduction in the glucagon-to-insulin ratio and catecholamine responses. In conclusion, a marked sexual dimorphism exists in a wide spectrum of blunted counterregulatory responses to exercise in T1DM after prior hypoglycemia. Key neuroendocrine (glucagon, catecholamines) and metabolic (EGP) homeostatic responses were better preserved during exercise in T1DM women after antecedent hypoglycemia. Preserved counterregulatory responses during exercise in T1DM women may confer greater protection against hypoglycemia than in men with T1DM.  相似文献   

2.
The effects of oral carbohydrate on modulating counterregulatory responses in humans remain undecided. This study's specific aim was to determine the effects of oral carbohydrate on autonomic nervous system (ANS) and neuroendocrine responses during hyperinsulinemic hypoglycemia and euglycemia. Nineteen healthy volunteers were studied during paired, single blind experiments. Nine subjects underwent two-step glucose clamps consisting of 60 min of euglycemia (5.0 mmol/l) followed by either 15 g of oral carbohydrate (cal) as orange juice or a noncaloric control (nocal) and subsequent 90 min of clamped hypoglycemia (2.9 mmol/l). Ten other subjects underwent two randomized 150-min hyperinsulinemic-euglycemic clamps with cal or nocal control administered at 60 min. Oral carbohydrate initially blunted (P < 0.05) epinephrine, norepinephrine, cortisol, glucagon, pancreatic polypeptide, muscle sympathetic nerve activity (MSNA), symptom, and systolic blood pressure responses during hypoglycemia. However, by the end of 90 min of hypoglycemia, plasma epinephrine and norepinephrine responses had rebounded and were increased (P < 0.05) compared with control. MSNA and cortisol levels remained suppressed during hypoglycemia (P < 0.05) after cal, whereas pancreatic polypeptide, glucagon, symptom, and blood pressure responses increased similar to control following initial suppression. Oral carbohydrate had no effects on neuroendocrine or ANS responses during hyperinsulinemic euglycemia. These results demonstrate that oral carbohydrate can have differential effects on the time course of ANS and neuroendocrine responses during hypoglycemia. We conclude that gastro-splanchnic-portal sensing of an amount of carbohydrate recommended for use in clinical practice for correction of hypoglycemia can have widespread and significant effects on central nervous system mediated counterregulatory responses in healthy humans.  相似文献   

3.
In the present study the hypothesis tested was that prior exercise may blunt counterregulatory responses to subsequent hypoglycemia. Healthy subjects [15 females (f)/15 males (m), age 27 +/- 1 yr, body mass index 22 +/- 1 kg/m(2), hemoglobin A(Ic) 5.6 +/- 0.5%] were studied during 2-day experiments. Day 1 involved either 90-min morning and afternoon cycle exercise at 50% maximal O2 uptake (VO2(max)) (priorEXE, n = 16, 8 m/8 f) or equivalent rest periods (priorREST, n = 14, 7 m/7 f). Day 2 consisted of a 2-h hypoglycemic clamp in all subjects. Endogenous glucose production (EGP) was measured using [3-3H]glucose. Muscle sympathetic nerve activity (MSNA) was measured using microneurography. Day 2 insulin (87 +/- 6 microU/ml) and plasma glucose levels (54 +/- 2 mg/dl) were equivalent after priorEXE and priorREST. Significant blunting (P < 0.01) of day 2 norepinephrine (-30 +/- 4%), epinephrine (-37 +/- 6%), glucagon (-60 +/- 4%), growth hormone (-61 +/- 5%), pancreatic polypeptide (-47 +/- 4%), and MSNA (-90 +/- 8%) responses to hypoglycemia occurred after priorEXE vs. priorREST. EGP during day 2 hypoglycemia was also suppressed significantly (P < 0.01) after priorEXE compared with priorREST. In summary, two bouts of exercise (90 min at 50% VO2(max)) significantly reduced glucagon, catecholamines, growth hormone, pancreatic polypeptide, and EGP responses to subsequent hypoglycemia. We conclude that, in normal humans, antecedent prolonged moderate exercise blunts neuroendocrine and metabolic counterregulatory responses to subsequent hypoglycemia.  相似文献   

4.
Hypoglycemia-induced counterregulatory failure is a dangerous complication of insulin use in diabetes mellitus. Controlled hypoglycemia studies in gene knockout models, which require the use of mice, would aid in identifying causes of defective counterregulation. Because stress can influence counterregulatory hormones and glucose homeostasis, we developed glucose clamps with remote blood sampling in conscious, unrestrained mice. Male C57BL/6 mice implanted with indwelling carotid artery and jugular vein catheters were subjected to 2 h of hyperinsulinemic glucose clamps 24 h apart, with a 6-h fast before each clamp. On day 1, blood glucose was maintained (euglycemia, 178 +/- 4 mg/dl) or decreased to 62 +/- 1 mg/dl (hypoglycemia) by insulin (20 mU x kg(-1) x min(-1)) and variable glucose infusion. Donor blood was continuously infused to replace blood sample volume. Baseline plasma epinephrine (32 +/- 8 pg/ml), corticosterone (16.1 +/- 1.8 microg/dl), and glucagon (35 +/- 3 pg/ml) were unchanged during euglycemia but increased significantly during hypoglycemia, with a glycemic threshold of approximately 80 mg/dl. On day 2, all mice underwent a hypoglycemic clamp (blood glucose, 64 +/- 1 mg/dl). Compared with mice that were euglycemic on day 1, previously hypoglycemic mice had significantly higher glucose requirements and significantly lower plasma glucagon and corticosterone (n = 6/group) on day 2. Epinephrine tended to decrease, although not significantly, in repeatedly hypoglycemic mice. Pre- and post-clamp insulin levels were similar between groups. We conclude that counterregulatory responses to acute and repeated hypoglycemia in unrestrained, chronically cannulated mice reproduce aspects of counterregulation in humans, and that repeated hypoglycemia in mice is a useful model of counterregulatory failure.  相似文献   

5.
Antecedent increases of corticosteroids can blunt counterregulatory responses to subsequent stress. Our aim was to determine whether prior activation of type I corticosteroid (mineralocorticoid) or type II corticosteroid (glucocorticoid) receptors blunts counterregulatory responses to subsequent hypoglycemia. Healthy volunteers participated in five randomized 2-day protocols. Day 1 involved morning and afternoon 2-h hyperinsulinemic (9 pmol.kg(-1).min(-1)) euglycemic clamps (PE; n = 14), hypoglycemic clamps (PH; n = 14), or euglycemic clamps with oral fludrocortisone (PE + F; type I agonist, 0.2 mg, n = 14), oral dexamethasone (PE + D; type II agonist, 0.75 mg, n = 13), or both (PE + F + D; n = 14). Day 2 was identical in all protocols and consisted of a 2-h hyperinsulinemic hypoglycemic clamp. Day 2 insulin (625 +/- 40 pmol/l) and glucose (2.9 +/- 0.1 mmol/l) levels were similar among groups. Levels of epinephrine, norepinephrine, glucagon, growth hormone, and MSNA were significantly blunted by prior activation of both type I and type II corticosteroid receptors to PE. Prior activation of both corticosteroid receptors also significantly blunted NEFA during subsequent hypoglycemia. Thus, levels of a wide spectrum of key counterregulatory mechanisms (neuroendocrine, ANS, and metabolic) were blunted by antecedent pharmacological stimulation of either type I or type II corticosteroid receptors in healthy man. These data suggest that activation of type I corticosteroid receptors in man can have acute and profound regulating effects on physiological stress in man. Both type I and type II corticosteroid receptors may be involved in the multiple mechanisms controlling counterregulatory responses to hypoglycemia in healthy man.  相似文献   

6.
Glucocorticoids have been implicated in hypoglycemia-induced autonomic failure but also contribute to normal counterregulation. To determine the influence of normal and hypoglycemia-induced levels of glucocorticoids on counterregulatory responses to acute and repeated hypoglycemia, we compared plasma catecholamines, corticosterone, glucagon, and glucose requirements in male wild-type (WT) and glucocorticoid-deficient, corticotropin-releasing hormone knockout (CRH KO) mice. Conscious, chronically cannulated, unrestrained WT and CRH KO mice underwent a euglycemic (Prior Eu) or hypoglycemic clamp (Prior Hypo) on day 1 followed by a hypoglycemic clamp on day 2 (blood glucose both days, 65 +/- 1 mg/dl). Baseline epinephrine and glucagon were similar, and norepinephrine was elevated, in CRH KO vs. WT mice. CRH KO corticosterone was almost undetectable (<1.5 microg/dl) and unresponsive to hypoglycemia. CRH KO glucose requirements were significantly higher during day 1 hypoglycemia despite epinephrine and glucagon responses that were comparable to or greater than those in WT. Hyperinsulinemic euglycemia did not increase hormones or glucose requirements above baseline. On day 2, Prior Hypo WT had significantly higher glucose requirements and significantly lower corticosterone and glucagon responses. Prior Hypo and Prior Eu CRH KO mice had similar day 2 glucose requirements. However, Prior Hypo CRH KO mice had significantly lower day 2 epinephrine and norepinephrine vs. Prior Eu CRH KO and tended to have lower glucagon than on day 1. We conclude that glucocorticoid insufficiency in CRH KO mice correlates with 1) impaired counterregulation during acute hypoglycemia and 2) complex effects after repeated hypoglycemia, neither preventing decreased hormone responses nor worsening glucose requirements.  相似文献   

7.
Changes in body fluid distribution are known to influence neuroendocrine function. The aim of the present study was to test the hypothesis that changes in plasma volume affect the counterregulatory neuroendocrine response to hypoglycemia. The tests were performed in 12 subjects in two situations: 'head-up' (+60 degrees head-up tilt standing for 30 min and hypoglycemia in sitting position afterwards) and 'leg-up' (leg-up position for 30 min and hypoglycemia in leg-up position afterwards) in a random order. Insulin-induced hypoglycemia was adjusted to 2.7 mmol/l for 15 min by glucose infusion. Plasma volume was greater by 2.2% (p < 0.001) in leg-up and lower by 9.6% (p < 0.001) in head-up position compared to the basal value in sitting position. Head-up position was associated with increases in ACTH, aldosterone, norepinephrine levels and plasma renin activity (p < 0.01). Leg-up position resulted in decreases in plasma growth hormone and epinephrine concentrations (p < 0.05). Except epinephrine, the neuroendocrine response to hypoglycemia, if any, was mild. Hypoglycemia failed to activate ACTH release after head-up position. Body fluid redistribution did not modify hormonal changes during insulin hypoglycemia. In conclusion, we suggest that body position and accompanying plasma volume changes do not appear to affect neuroendocrine and counterregulatory responses to moderate, short duration hypoglycemia in healthy subjects.  相似文献   

8.
Individuals with type 1 diabetes demonstrate a hypoglycemia-specific defect in glucagon secretion. To determine whether intraislet hyperinsulinemia plays a role in the genesis of this defect, glucagon-secretory responses to moderate hypoglycemia induced by either insulin or a novel combination of the noninsulin glucose-lowering agents 5-aminoimidazole-4-carboxamide (AICAR) and phlorizin were compared in diabetic BB rats (an animal model of type 1 diabetes) and nondiabetic BB rats. The phlorizin-AICAR combination was able to induce moderate and equivalent hypoglycemia in both diabetic and nondiabetic BB rats in the absence of marked hyperinsulinemia. Diabetic BB rats demonstrated impaired glucagon and epinephrine responses during insulin-induced hypoglycemia compared with nondiabetic rats. In contrast, both glucagon (9- to 10-fold increase) and epinephrine (5- to 6-fold increase) responses were markedly improved during phlorizin-AICAR hypoglycemia. Combining phlorizin, AICAR, and insulin attenuated the glucagon response to hypoglycemia by 70% in the diabetic BB rat. Phlorizin plus AICAR had no effect on counterregulatory hormones under euglycemic conditions. We conclude that alpha-cell glucagon secretion in response to hypoglycemia is not defective if intraislet hyperinsulinemia is prevented. This suggests that exogenous insulin plays a pivotal role in the etiology of this defect.  相似文献   

9.
Hypoglycemia frequently occurs during or after exercise in intensively treated patients with type 1 diabetes mellitus (T1DM), but the underlying mechanisms are not clear. In both diabetic and nondiabetic subjects, moderate hypoglycemia blunts counterregulatory responses to subsequent exercise, but it is unknown whether milder levels of hypoglycemia can exert similar effects in a dose-dependent fashion. This study was designed to test the hypothesis that prior hypoglycemia of differing depths induces acute counterregulatory failure of proportionally greater magnitude during subsequent exercise in T1DM. Twenty-two T1DM patients (11 males/11 females, HbA1c 8.0 +/- 0.3%) were studied during 90 min of euglycemic cycling exercise after two 2-h periods of previous day euglycemia or hypoglycemia of 3.9, 3.3, or 2.8 mmol/l (HYPO-3.9, HYPO-3.3, HYPO-2.8, respectively). Patients' counterregulatory responses (circulating levels of neuroendocrine hormones, intermediary metabolites, substrate flux, tracer-determined glucose kinetics, and cardiovascular measurements) were assessed during exercise. Identical euglycemia and basal insulin levels were successfully maintained during all exercise studies, regardless of blood glucose levels during the previous day. After day 1 euglycemia, patients displayed normal counterregulatory responses to exercise. Conversely, when identical exercise was performed after day 1 hypoglycemia of increasing depth, a progressively greater blunting of glucagon, catecholamine, cortisol, endogenous glucose production, and lipolytic responses to exercise was observed. This was paralleled by a graduated increase in the amount of exogenous glucose needed to maintain euglycemia during exercise. Our results demonstrate that acute counterregulatory failure during prolonged, moderate-intensity exercise may be induced in a dose-dependent fashion by differing depths of antecedent hypoglycemia starting at only 3.9 mmol/l in patients with T1DM.  相似文献   

10.
We tested the hypothesis that increased endogenous cortisol secretion reduces autonomic neuroendocrine and neurogenic symptom responses to subsequent hypoglycemia. Twelve healthy young adults were studied on two separate occasions, once after infusions of a pharmacological dose of alpha-(1-24)-ACTH (100 microg/h) from 0930 to 1200 and 1330 to 1600, which raised plasma cortisol levels to approximately 45 microg/dl on day 1, and once after saline infusions on day 1. Hyperinsulinemic (2.0 mU x kg(-1) x min(-1)) stepped hypoglycemic clamps (90, 75, 65, 55, and 45 mg/dl glucose steps) were performed on the morning of day 2 on both occasions. These markedly elevated antecedent endogenous cortisol levels reduced the adrenomedullary (P = 0.004, final plasma epinephrine levels of 489 +/-64 vs. 816 +/-113 pg/ml), sympathetic neural (P = 0.0022, final plasma norepinephrine levels of 244 +/-15 vs. 342 +/-22 pg/ml), parasympathetic neural (P = 0.0434, final plasma pancreatic polypeptide levels of 312 +/- 37 vs. 424 +/- 56 pg/ml), and neurogenic (autonomic) symptom (P = 0.0097, final symptom score of 7.1 +/-1.5 vs. 10.6 +/- 1.6) responses to subsequent hypoglycemia. Growth hormone, but not glucagon or cortisol, responses were also reduced. The findings that increased endogenous cortisol secretion reduces autonomic neuroendocrine and neurogenic symptom responses to subsequent hypoglycemia are potentially relevant to cortisol mediation of hypoglycemia-associated autonomic failure, and thus a vicious cycle of recurrent iatrogenic hypoglycemia, in people with diabetes mellitus.  相似文献   

11.
The anatomic connections of the paraventricular nucleus of the hypothalamus (PVN) are such that it is ideally situated to modulate and/or control autonomic responses to a variety of stressors, including hypoglycemia. In our experimental model of hypoglycemia-associated autonomic failure (HAAF), a syndrome in which the counterregulatory response to hypoglycemia is partially compromised via unknown mechanisms, activation of the PVN is blunted (15). We hypothesized that this blunted PVN activation during HAAF may be sufficient to cause the impaired counterregulatory response. To test this hypothesis, we anesthetized the PVN with lidocaine during insulin-induced hypoglycemia in rats and measured counterregulatory hormone levels. PVN inactivation decreased indexes of the sympathoadrenal response (plasma epinephrine and norepinephrine) and the hypothalamic-pituitary axis response (ACTH). Inactivation decreased the peak epinephrine response to hypoglycemia by almost half (-42 +/- 6% from control; P = 0.04) and the peak norepinephrine response by 34 +/- 5% (P = 0.01). The peak plasma ACTH levels attained were suppressed by 35 +/- 6% (P = 0.02). Adrenal corticosterone and pancreatic glucagon responses were not impaired. This pattern of neuroendocrine response is unlike that previously seen with our HAAF model. Control infusions of lidocaine >or=1 mm anterior or posterior to the PVN did not simulate this neuroendocrine pattern. Thus it appears that decreased PVN activation, as occurs with HAAF, may be involved in specific components of HAAF (i.e., blunting the sympathoadrenal and hypothalamic-pituitary-adrenocortical axis response), but not in others (i.e., blunting the glucagon response).  相似文献   

12.
Our aim was to determine whether complete hepatic denervation would affect the hormonal response to insulin-induced hypoglycemia in dogs. Two weeks before study, dogs underwent either hepatic denervation (DN) or sham denervation (CONT). In addition, all dogs had hollow steel coils placed around their vagus nerves. The CONT dogs were used for a single study in which their coils were perfused with 37 degrees C ethanol. The DN dogs were used for two studies in a random manner, one in which their coils were perfused with -20 degrees C ethanol (DN + COOL) and one in which they were perfused with 37 degrees C ethanol (DN). Insulin was infused to create hypoglycemia (51 +/- 3 mg/dl). In response to hypoglycemia in CONT, glucagon, cortisol, epinephrine, norepinephrine, pancreatic polypeptide, glycerol, and hepatic glucose production increased significantly. DN alone had no inhibitory effect on any hormonal or metabolic counterregulatory response to hypoglycemia. Likewise, DN in combination with vagal cooling also had no inhibitory effect on any counterregulatory response except to reduce the arterial plasma pancreatic polypeptide response. These data suggest that afferent signaling from the liver is not required for the normal counterregulatory response to insulin-induced hypoglycemia.  相似文献   

13.
Selective serotonin reuptake inhibitors (SSRIs) are widely prescribed for patients with comorbid diabetes and depression. Clinical case studies in diabetic patients, however, suggest that SSRI therapy may exacerbate hypoglycemia. We hypothesized that SSRIs might increase the risk of hypoglycemia by impairing hormonal counterregulatory responses (CRR). We evaluated the effect of the SSRI sertraline on hormonal CRR to single or recurrent hypoglycemia in nondiabetic rats. Since there are time-dependent effects of SSRIs on serotonin neurotransmission that correspond with therapeutic action, we evaluated the effect of 6- or 20-day sertraline treatment on hypoglycemia CRR. We found that 6-day sertraline (SERT) treatment specifically enhanced the epinephrine response to a single bout of hypoglycemia vs. vehicle (VEH)-treated rats (t = 120: VEH, 2,573 +/- 448 vs. SERT, 4,202 +/- 545 pg/ml, P < 0.05). In response to recurrent hypoglycemia, VEH-treated rats exhibited the expected impairment in epinephrine secretion (t = 60: 678 +/- 73 pg/ml) vs. VEH-treated rats experiencing first-time hypoglycemia (t = 60: 2,081 +/- 436 pg/ml, P < 0.01). SERT treatment prevented the impaired epinephrine response in recurrent hypoglycemic rats (t = 60: 1,794 +/- 276 pgl/ml). In 20-day SERT-treated rats, epinephrine, norepinephrine, and glucagon CRR were all significantly elevated above VEH-treated controls in response to hypoglycemia. Similarly to 6-day SERT treatment, 20-day SERT treatment rescued the impaired epinephrine response in recurrent hypoglycemic rats. Our data demonstrate that neither 6- nor 20-day sertraline treatment impaired hormonal CRR to hypoglycemia in nondiabetic rats. Instead, sertraline treatment resulted in an enhancement of hypoglycemia CRR and prevented the impaired adrenomedullary response normally observed in recurrent hypoglycemic rats.  相似文献   

14.
D G Patel 《Life sciences》1989,44(4):301-310
Effects of acute sodium salicylate infusion on glucagon and epinephrine responses to insulin hypoglycemia were studied in streptozotocin diabetic and age-matched control rats. Sodium salicylate (50 mg/kg/h) was infused intravenously alone for 90 minutes and then with insulin in short-term (10-15 days post-streptozotocin) and long-term (80-100 days post-streptozotocin) diabetic as well as age-matched control rats to produce hypoglycemia. Sodium salicylate decreased basal plasma glucose in control and diabetic rats but increased basal plasma glucagon levels only in control rats. The infusion of sodium salicylate during insulin-hypoglycemia in control and short-term diabetic rats caused a significant increase in glucagon secretion. Long-term diabetic rats have impaired glucagon and epinephrine secretory responses to insulin-hypoglycemia. This defect was normalized by acute sodium salicylate infusion during insulin-hypoglycemia. However, indomethacin (5 mg/kg i.p.; twice at 18 hr intervals) improved, but failed to completely normalize the abnormal glucagon and epinephrine secretory responses to insulin-hypoglycemia in long-term diabetic rats. These results suggest that endogenous prostaglandins may play a partial role in the impairment of glucagon and epinephrine secretion in response to insulin-hypoglycemia in long-term diabetic rats.  相似文献   

15.
Different brain regions sense and modulate the counterregulatory responses that can occur in response to declining plasma glucose levels. The aim of this study was to determine if changes in regional cerebral blood flow (rCBF) during hypoglycemia relative to euglycemia are similar for two imaging modalities–pulsed arterial spin labeling magnetic resonance imaging (PASL-MRI) and positron emission tomography (PET). Nine healthy non-diabetic participants underwent a hyperinsulinemic euglycemic (92±3 mg/dL) – hypoglycemic (53±1 mg/dL) clamp. Counterregulatory hormone levels were collected at each of these glycemic levels and rCBF measurements within the previously described network of hypoglycemia-responsive regions (thalamus, medial prefrontal cortex and globus pallidum) were obtained using PASL-MRI and [15O] water PET. In response to hypoglycemia, rCBF was significantly increased in the thalamus, medial prefrontal cortex, and globus pallidum compared to euglycemia for both PASL-MRI and PET methodologies. Both imaging techniques found similar increases in rCBF in the thalamus, medial prefrontal cortex, and globus pallidum in response to hypoglycemia. These brain regions may be involved in the physiologic and symptom responses to hypoglycemia. Compared to PET, PASL-MRI may provide a less invasive, less expensive method for assessing changes in rCBF during hypoglycemia without radiation exposure.  相似文献   

16.
Exercise-induced hypoglycemia can occur within hours after exercise in type 1 diabetes mellitus (T1DM) patients. This study tested the hypothesis that an acute exercise bout causes (within hours) blunted autonomic and metabolic responses to subsequent hypoglycemia in patients with T1DM. Twelve T1DM patients (3 W/9 M) were studied during a single-step, 2-h hyperinsulinemic (572 +/- 4 pmol/l) hypoglycemic (2.8 +/- 0.1 mmol/l) clamp 2 h after either a hyperinsulinemic euglycemic (AM EUG) or hypoglycemic clamp (AM HYPO) or after sitting in a chair with basal insulin infusion (AM CON) or 90 min of moderate-intensity exercise (50% Vo(2 max), AM EX). Both AM HYPO and AM EX significantly blunted epinephrine responses and muscle sympathetic nerve activity responses to subsequent hypoglycemia compared with both control groups. Endogenous glucose production was significantly lower and the exogenous glucose infusion rate needed to maintain the hypoglycemic level was significantly greater during subsequent hypoglycemia in AM EX vs. CON. Rate of glucose disposal (Rd) was significantly reduced following AM HYPO. In summary, within 2.5 h, both moderate-intensity AM EX and AM HYPO blunted key autonomic counterregulatory responses. Despite this, glucose Rd was reduced during afternoon hypoglycemia following morning hypoglycemia, indicating posthypoglycemic insulin resistance. After morning exercise, endogenous glucose production was blunted, but glucose Rd was maintained during afternoon hypoglycemia, thereby indicating reduced metabolic defenses against hypoglycemia. These data suggest that exercise-induced counterregulatory failure can occur very rapidly, increasing the risk for hypoglycemia in T1DM within hours.  相似文献   

17.
Antecedent hypoglycemia leads to impaired counterregulation and hypoglycemic unawareness. To ascertain whether antecedent portal vein hypoglycemia impairs portal vein glucose sensing, thereby inducing counterregulatory failure, we compared the effects of antecedent hypoglycemia, with and without normalization of portal vein glycemia, upon the counterregulatory response to subsequent hypoglycemia. Male Wistar rats were chronically cannulated in the carotid artery (sampling), jugular vein (glucose and insulin infusion), and mesenteric vein (glucose infusion). On day 1, the following three distinct antecedent protocols were employed: 1) HYPO-HYPO: systemic hypoglycemia (2.52 +/- 0.11 mM); 2) HYPO-EUG: systemic hypoglycemia (2.70 +/- 0.03 mM) with normalization of portal vein glycemia (portal vein glucose = 5.86 +/- 0.10 mM); and 3) EUG-EUG: systemic euglycemia (6.33 +/- 0.31 mM). On day 2, all groups underwent a hyperinsulinemic-hypoglycemic clamp in which the fall in glycemia was controlled so as to reach the nadir (2.34 +/- 0.04 mM) by minute 75. Counterregulatory hormone responses were measured at basal (-30 and 0) and during hypoglycemia (60-105 min). Compared with EUG-EUG, antecedent hypoglycemia (HYPO-HYPO) significantly blunted the peak epinephrine (10.44 +/- 1.35 vs. 15.75 +/- 1.33 nM: P = 0.01) and glucagon (341 +/- 16 vs. 597 +/- 82 pg/ml: P = 0.03) responses to next-day hypoglycemia. Normalization of portal glycemia during systemic hypoglycemia on day 1 (HYPO-EUG) prevented blunting of the peak epinephrine (15.59 +/- 1.43 vs. 15.75 +/- 1.33 nM: P = 0.94) and glucagon (523 +/- 169 vs. 597 +/- 82 pg/ml: P = 0.66) responses to day 2 hypoglycemia. Consistent with hormonal responses, the glucose infusion rate during day 2 hypoglycemia was substantially elevated in HYPO-HYPO (74 +/- 12 vs. 49 +/- 4 micromol x kg(-1) x min(-1); P = 0.03) but not HYPO-EUG (39 +/- 7 vs. 49 +/- 4 micromol x kg(-1) x min(-1): P = 0.36). Antecedent hypoglycemia local to the portal vein is required for the full induction of hypoglycemia-associated counterregulatory failure with slow-onset hypoglycemia.  相似文献   

18.
The aim of this study was to determine whether activation of central type II glucocorticoid receptors can blunt autonomic nervous system counterregulatory responses to subsequent hypoglycemia. Sixty conscious unrestrained Sprague-Dawley rats were studied during 2-day experiments. Day 1 consisted of either two episodes of clamped 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) hypoglycemia (2.8 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia (6.2 +/- 0.1 mM; n = 12), hyperinsulinemic euglycemia plus simultaneous lateral cerebroventricular infusion of saline (24 microl/h; n = 8), or hyperinsulinemic euglycemia plus either lateral cerebral ventricular infusion (n = 8; LV-DEX group), fourth cerebral ventricular (n = 10; 4V-DEX group), or peripheral (n = 10; P-DEX group) infusion of dexamethasone (5 microg/h), a specific type II glucocorticoid receptor analog. For all groups, day 2 consisted of a 2-h hyperinsulinemic (30 pmol x kg(-1) x min(-1)) or hypoglycemic (2.9 +/- 0.2 mM) clamp. The hypoglycemic group had blunted epinephrine, glucagon, and endogenous glucose production in response to subsequent hypoglycemia. Consequently, the glucose infusion rate to maintain the glucose levels was significantly greater in this group vs. all other groups. The LV-DEX group did not have blunted counterregulatory responses to subsequent hypoglycemia, but the P-DEX and 4V-DEX groups had significantly lower epinephrine and norepinephrine responses to hypoglycemia compared with all other groups. In summary, peripheral and fourth cerebral ventricular but not lateral cerebral ventricular infusion of dexamethasone led to significant blunting of autonomic counterregulatory responses to subsequent hypoglycemia. These data suggest that prior activation of type II glucocorticoid receptors within the hindbrain plays a major role in blunting autonomic nervous system counterregulatory responses to subsequent hypoglycemia in the conscious rat.  相似文献   

19.
Severe hypoglycemia occurs in intensively treated patients with type 1 diabetes mellitus (T1DM) due in part to deficient epinephrine counterregulatory responses. Previously, we have found that T1DM patients demonstrated a spectrum of altered responses to epinephrine at a variety of target organs compared with nondiabetic healthy subjects. What is not known is whether intensive glycemic control further modifies target organ responses in individuals with T1DM. Therefore, the aim of this study is to assess whether there is tissue specific (liver, muscle, adipose tissue, pancreas and cardiovascular) resistance to epinephrine in intensively controlled (IC) T1DM compared with those with conventional control (CC). Eight IC patients (age 33 +/- 4 yr, BMI 24 +/- 2 kg/m2, Hb A1C 6.7 +/- 0.1%), and 11 CC patients (age 35 +/- 3 yr, BMI 25 +/- 1 kg/m2, Hb A1C 9.6 +/- 0.1%) underwent two separate randomized, single-blind, 2-h hyperinsulinemic euglycemic clamp studies with (EPI) and without (NO EPI) epinephrine infusion. Epinephrine levels during EPI were similar in all groups (5,197 +/- 344 pmol/l). Glucose (5.3 +/- 0.1 mmol/l) and insulin levels (515 +/- 44 pmol/l) were similar in all groups during the glucose clamps. Endogenous glucose production (EGP) and glucose uptake (R(d)) were determined using [3-H3]glucose. Muscle biopsy was performed at the end of each study. IC had a significantly reduced EGP and R(d) responses to EPI compared with CC. Glucagon responses to EPI were similarly blunted in both IC and CC. Free fatty acid and glycerol response to EPI was greater in CC compared with IC. There was a significantly greater systolic blood pressure response to EPI in CC. We conclude that, despite similar epinephrine, insulin, and glucose levels, intensively treated T1DM patients had reduced cardiovascular, skeletal muscle, hepatic, and adipose target organ responses to EPI compared with conventionally treated T1DM patients.  相似文献   

20.
The aim of this study was to test the hypothesis that antecedent short-term administration of estradiol or progesterone into the central nervous system (CNS) reduces levels of neuroendocrine counterregulatory hormones during subsequent hypoglycemia. Conscious unrestrained male Sprague-Dawley rats were studied during randomized 2-day experiments. Day 1 consisted of an 8-h lateral ventricle infusion of estradiol (1 mug/mul; n = 9), progesterone (1 mug/mul; n = 9), or saline (0.2 mul/min; n = 10). On day 2, a 2-h hyperinsulinemic (30 pmol.kg(-1).min(-1)) hypoglycemic (2.9 +/- 0.2 mM) clamp was performed on all rats. Central administration of estradiol on day 1 resulted in significantly lower plasma epinephrine levels during hypoglycemia compared with saline, whereas central administration of progesterone resulted in increased levels of plasma norepinephrine and decreased levels of corticosterone both at baseline and during hypoglycemia. Glucagon responses during hypoglycemia were unaffected by prior administration of estradiol or progesterone. Endogenous glucose production following day 1 estradiol was significantly lower during day 2 hypoglycemia, and consequently, the glucose infusion rate to maintain the glycemia was significantly greater after estradiol administration compared with saline. These data suggest that 1) CNS administration of both female reproductive hormones can have rapid effects in modulating levels of counterregulatory hormones during subsequent hypoglycemia in conscious male rats, 2) forebrain administration of reproductive hormones can significantly reduce pituitary adrenal and sympathetic nervous system drive during hypoglycemia, 3) reproductive steroid hormones produce differential effects on sympathetic nervous system activity during hypoglycemia, and 4) reduction of epinephrine resulted in significantly blunted metabolic counterregulatory responses during hypoglycemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号