首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of phenotypical expression of synaptic mutations in combination with the localization of corresponding genes on a genetic map permit individual stages of the meiotic process to be differentiated. Two rye asynaptic genes, sy1 and sy9, were mapped with the use of microsatellite markers (SSR) in the pericentromeric regions of the long chromosome arms 7R and 2R, respectively. The sy9 gene cosegregated with two SSR markers Xscm43 and Xgwm132. The asynaptic gene sy1 was mapped within the interval between the isozyme locus Aat2 and two cosegregating loci Xrems1188 and Xrems1135 that are located at a distance of 0.4 cM proximally and 0.1 cM distally with respect to the gene lous. Possible evolutionary relationships of the mapped genes with homeological loci of the Triticeae species and more distant cereal species, such as maize and rice, are discussed.  相似文献   

2.
The sy19 mutation, which impairs the homology of meiotic chromosome synapsis in rye, were mapped using a specially created F2 population by means of isozyme Acph1 locus and microsatellite (SSR) markers. The sy19 gene was localized in the chromosome 7R in the pericentromeric region of long arm based on the linked inheritance with the Acph1 locus. The locus was linked with five rye SSR markers, with the Xrems1234 locus being located closest to the sy19 gene (6.4 cM). The genetic map of the analyzed chromosome 7R region includes ten markers and the sy19 locus. A possible function of the Sy1 and Sy19 genes based on the data on comparative genomics is discussed.  相似文献   

3.
The Cf-6 locus of tomato conferring resistance to the Belarus population of the leaf mould causative agent was mapped to the chromosomal region, located 2.2 and 3.4 cM apart from the microsatellite markers, SSR128 and SSR48, respectively. It was demonstrated that the Cf-6 gene, like the Cf-2/Cf-5 cluster, was located on the short arm of tomato chromosome 6. However, Cf-6 differed from these genes concerning phytopathology and molecular characteristics. Based on the Cf-2 gene sequence, a molecular marker, 2-2C, capable of identification of the Cf-6, Cf-2, and Cf-5 loci, was constructed.  相似文献   

4.
We report the molecular mapping of a gene for pollen fertility in A1 (milo) type cytoplasm of sorghum using AFLP and SSR marker analysis. DNA from an F2 population comprised of 84 individuals was screened with AFLP genetic markers to detect polymorphic DNAs linked to fertility restoration. Fifteen AFLP markers were linked to fertility restoration from the initial screening with 49 unique AFLP primer combinations (+3/+3 selective bases). As many of these AFLP markers had been previously mapped to a high-density genetic map of sorghum, the target gene (rf1) could be mapped to linkage group H. Confirmation of the map location of rf1 was obtained by demonstrating that additional linkage group-H markers (SSR, STS, AFLP) were linked to fertility restoration. The closest marker, AFLP Xtxa2582, mapped within 2.4 cM of the target loci while two SSRs, Xtxp18 and Xtxp250, flanked the rf1 locus at 12 cM and 10.8 cM, respectively. The availability of molecular markers will facilitate the selection of pollen fertility restoration in sorghum inbred-line development and provide the foundation for map-based gene isolation. Received: 22 August 2000 / Accepted: 18 October 2000  相似文献   

5.
Aluminium toxicity is a major problem for crop production on acid soils. Rye (Secale cereale L.) has one of the most efficient group of genes for aluminium tolerance, at least, four independent and dominant loci, Alt1, Alt2, Alt3 and Alt4, located on chromosome arms 6RS, 3RS, 4RL and 7RS, have been described. The increasing availability of expressed sequence tags in rye and related cereals provides a valuable resource of non-anonymous DNA molecular markers. In order to obtain simple sequence repeat (SSR) markers related with Al tolerance more than 1,199 public accessible rye cDNA sequences from Al-stressed roots were exploited as a resource for SSR markers development. From a total of 21 S. cereale microsatellite (SCM) loci analysed, 12 were located on chromosomes 1R, 2R, 3R, 4R and 5R, using wheat–rye addition lines or mapped using a F2 population segregating for Al tolerance. Seven SCM loci were included in a rye map with other SCIM and RAPD markers. Moreover, 14 SCM loci could be associated to proteins with known or unknown function. The possible implications of these sequences in aluminium tolerance mechanisms are discussed.  相似文献   

6.
A framework genetic map based on genomic DNA-derived SSR, EST-derived SSR, EST-STS and EST-RFLP markers was developed using 181 genotypes generated from D8909-15 (female) × F8909-17 (male), the ‘9621’ population. Both parents are half siblings with a common female parent, Vitis rupestris ‘A. de Serres’, and different male parents (forms of V. arizonica). A total of 542 markers were tested, and 237 of them were polymorphic for the female and male parents. The female map was developed with 159 mapped markers covering 865.0 cM with an average marker distance of 5.4 cM in 18 linkage groups. The male map was constructed with 158 mapped molecular markers covering 1055.0 cM with an average distance of 6.7 cM in 19 linkage groups. The consensus ‘9621’ map covered 1154.0 cM with 210 mapped molecular markers in 19 linkage groups, with average distance of 5.5 cM. Ninety-four of the 210 markers on the consensus map were new. The ‘Sex’ expression locus segregated as single major gene was mapped to linkage group 2 on the consensus and the male map. PdR1, a major gene for resistance to Pierce’s disease, caused by the bacterium Xylella fastidiosa, was mapped to the linkage group 14 between markers VMCNg3h8 and VVIN64, located 4.3 and 2.7 cM away from PdR1, respectively. Differences in segregation distortion of markers were also compared between parents, and three clusters of skewed markers were observed on linkage groups 6, 7 and 14.  相似文献   

7.
Triticale (x Triticosecale Wittmack) is a relatively new cereal crop. In Poland, triticale is grown on 12 % of arable land (http://www.stat.gov.pl). There is an increasing interest in its cultivation due to lowered production costs and increased adaptation to adverse environmental conditions. However, it has an insufficient tolerance to the presence of aluminum ions (Al3+) in the soil. The number of genes controlling aluminum tolerance in triticale and their chromosomal location is not known. Two F2 mapping biparental populations (MP1 and MP15) segregating for aluminum (Al) tolerance were tested with AFLP, SSR, DArT, and specific PCR markers. Genetic mapping enabled the construction of linkage groups representing chromosomes 7R, 5R and 2B. Obtained linkage groups were common for both mapping populations and mostly included the same markers. Composite interval mapping (CIM) allowed identification of a single QTL that mapped to the 7R chromosome and explained 25 % (MP1) and 36 % (MP15) of phenotypic variation. The B1, B26 and Xscm150 markers were 0.04 cM and 0.02 cM from the maximum of the LOD function in the MP1 and MP15, respectively and were highly associated with aluminum tolerance as indicated by Kruskal–Wallis nonparametric test. Moreover, the molecular markers B1, B26, Xrems1162 and Xscm92, previously associated with the Alt4 locus that encoded an aluminum-activated malate transporter (ScALMT1) that was involved in Al tolerance in rye (Secale cereale) also mapped within QTL. Biochemical analysis of plants represented MP1 and MP15 mapping populations confirmed that the QTL located on 7R chromosome in both mapping populations is responsible for Al tolerance.  相似文献   

8.
Summary RFLP mapping of chromosome 5R in the F3 generation of a rye (Secale cereale L.) cross segregating for gibberellic acid (GA3)-insensitive dwarfness (Ct2/ct2) and spring growth habit (Sp1/sp1) identified RFLP loci close to each of these agronomically important genes. The level of RFLP in the segregating population was high, and thus allowed more than half of the RFLP loci to be mapped, despite partial homozygosity in the parental F2 plant. Eight further loci were mapped in an unrelated F2 rye population, and a further two were placed by inference from equivalent genetic maps of related wheat chromosomes, allowing a consensus map of rye chromosome 5R, consisting of 29 points and spanning 129 cM, to be constructed. The location of the ct2 dwarfing gene was shown to be separated from the segment of the primitive 4RL translocated to 5RL, and thus the gene is probably genetically unrelated to the major GA-insensitive Rht genes of wheat located on chromosome arms 4BS and 4DS. The map position of Sp1 is consistent both with those of wheat Vrn1 and Vrn3, present on chromosome arms 5AL and 5DL, respectively, and with barley Sh2 which is distally located on chromosome arm 7L (= 5HL).  相似文献   

9.
A maize genetic linkage map was generated using SSR and SNP markers in a F7:8 recombinant inbred line (RIL) population derived from a cross of waxy corn (KW7) and dent corn (Mo17). A total of 465 markers, including 459 SSR and 6 SNP markers, were assigned to 10 linkage groups which spanned 2,656.5 cM with an average genetic distance between markers of 5.7 cM, and the number of loci per linkage group ranged from 39 to 55. The SSR (85.4%) and SNP (83.3%) markers showed Mendelian segregation ratios in the RIL population at a 5% significance threshold. In linkage analysis of six SNP loci associated with kernel starch synthesis genes (ae1, bt2, sh1, sh2, su1, and wx1), all six loci were successfully mapped and are closely linked with SSR markers in chromosomes 3 (sh2), 4 (su1 and bt2), 5 (ae1), and 9 (sh1 and wx1). The SSR markers linked with genes in starch synthesis may be utilized in marker assisted breeding programs. The resulting genetic map will be useful in dissection of quantitative traits and the identification of superior QTLs from the waxy hybrid corn. Additionally, these data support further genetic analysis and development of maize breeding programs.  相似文献   

10.
11.
Genetic analysis established that Aitaiyin3, a dwarf rice variety derived from a semidwarf cultivar Taiyin1, carries two recessive semidwarf genes. By using simple sequence repeat (SSR) markers, we mapped the two semidwarf genes, sd-1 and sd-t2 on chromosomes 1 and 4, respectively. Sd-t2 was thus named because the semidrawf gene sd-t has already been identified from Aitaiyin 2 whose origin could be traced back to Taiyin1. The result of the molecular mapping of sd-1 gene revealed it is linked to four SSR markers found on chromosome 1. These markers are: RM297, RM302, RM212, and OSR3 spaced at 4.7 cM, 0 cM, 0.8cM and 0 cM, respectively. Sd-t2 was found to be located on chromosome 4 using five SSR markers: two markers, SSR332 and RM1305 located proximal to sd-t2 are spaced 11.6 cM, 3.8 cM, respectively, while the three distally located primers, RM5633, RM307, and RM401 are separated by distances of 0.4 cM, 0.0 cM, and 0.4 cM, respectively. __________ Translated from Acta Genetica Sinica, 2005, 32 (2) [译自: 遗传学报, 2005,32(2)]  相似文献   

12.
A collection of 94 F6 individuals derived from crosses between Lotus japonicus, Gifu B-129 (G) and Miyakojima MG-20 (M) were used for mapping. By using the HEGS running system, 427 EcoRI/MseI primer pairs were selected to generate a total of 2053 markers, consisting of 739 G-associated dominant markers, 674 M-associated dominant markers, 640 co-dominant markers, 95 SSR markers and 2 dCAPS markers. Excluding heavily distorted markers, 1588 were mapped to six chromosomes of the L. japonicus genome based on the 97 reference markers. This linkage map consisted of 1023 unique markers (excluding duplicated markers) and covered a total of 508.5 cM of the genome with an average chromosome length of 84.7 cM and interval distance of 0.50 cM. Fifteen quantitative traits loci for eight morphological traits were also mapped. This linkage map will provide a useful framework for physical map construction in L. japonicus in the near future.Key words: Lotus japonicus, AFLP, SSR, linkage map, HEGS (high efficiency genome scanning)  相似文献   

13.
Daily consumption of cadmium (Cd) contaminated foods poses a risk to human health. Cultivar selection is an important method to limit Cd uptake and accumulation, however, analyzing grain Cd concentration is costly and time-consuming. Developing markers for low Cd accumulation will facilitate marker assisted selection (MAS). Inheritance studies using a threshold value of 0.2 mg kg?1 for low and high and an F2:3 population showed that low Cd accumulation in soybean seed is under the control of a major gene (Cda1, proposed name) with the allele for low accumulation being dominant. A recombinant inbred line (RIL) population (F6:8) derived from the cross AC Hime (high Cd accumulation) and Westag-97 (low Cd accumulation) was used to identify the DNA markers linked to Cda gene(s) or quantitative trait loci (QTLs) controlling low Cd accumulation. We screened 171 simple sequence repeat (SSR) primers that showed polymorphism between parents on the 166 RILs. Of these, 40 primers were newly developed from the soybean genomic DNA sequence. Seven SSR markers, SatK138, SatK139, SatK140 (0.5 cM), SatK147, SacK149, SaatK150 and SattK152 (0.3 cM), were linked to Cda1 in soybean seed. All the linked markers were mapped to the same linkage group (LG) K. The closest flanking SSR markers linked to Cda1 were validated using a parallel population (RILs) involving Leo × Westag-97. Linked markers were also validated with diverse soybean genotypes differing in their seed Cd concentration and showed that SSR markers SatK147, SacK149, and SattK152 clearly differentiated the high and low Cd accumulating genotypes tested. To treat Cd uptake as a quantitative trait, QTL analysis using a linkage map constructed with 161 markers identified a major QTL associated with low Cd concentration in the seeds. The QTL was also mapped to the same location as Cda1 on LG-K. This QTL accounted for 57.3% of the phenotypic variation. Potential candidate genes (genes with known or predicted function that could influence the seed Cd concentration) like protein kinase, putative Adagio-like protein, and plasma membrane H+-ATPase were found to be located in the locus of interest. Of the four SSR markers located in the region, SattK152 was localized in the plasma membrane H+-ATPase gene. SSR markers closely linked to Cda1 in seeds of soybean were identified and have potential to be used for MAS to develop low Cd accumulating cultivars in a breeding program.  相似文献   

14.
The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F2 progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.Communicated by J. Dvorak  相似文献   

15.
Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.  相似文献   

16.
Simple sequence repeat (SSR) markers developed from Malus, as well as Prunus, Pyrus and Sorbus, and some other sequence-tagged site (STS) loci were analysed in an interspecific F1 apple progeny from the cross ‘Fiesta’ × ‘Totem’ that segregated for several agronomic characters. A linkage map was constructed using 259 STS loci (247 SSRs, four SCARs and eight known-function genes) and five genes for agronomic traits—scab resistance (Vf), mildew resistance (Pl-2), columnar growth habit (Co), red tissues (Rt) and green flesh background colour (Gfc). Ninety SSR loci and three genes (ETR1, Rt and Gfc) were mapped for the first time in apple. The transferability of markers from other Maloideae to Malus was found to be around 44%. The loci are spread across 17 linkage groups, corresponding to the basic chromosome number of Malus and cover 1,208 cM, approximately 85% of the estimated length of the apple genome. Interestingly, we have extended the top of LG15 with eight markers covering 25 cM. The average map density is 4.7 cM per marker; however, marker density varies greatly between linkage groups, from 2.5 in LG14 to 8.9 in LG7, with some areas of the genome still in need of further STS markers for saturation.  相似文献   

17.
18.
An apple rootstock progeny raised from the cross between the very dwarfing ??M.27?? and the more vigorous ??M.116?? (??M.M.106???×???M.27??) was used for the construction of a linkage map comprising a total of 324 loci: 252 previously mapped SSRs, 71 newly characterised or previously unmapped SSR loci (including 36 amplified by 33 out of the 35 novel markers reported here), and the self-incompatibility locus. The map spanned the 17 linkage groups (LG) expected for apple covering a genetic distance of 1,229.5?cM, an estimated 91% of the Malus genome. Linkage groups were well populated and, although marker density ranged from 2.3 to 6.2?cM/SSR, just 15 gaps of more than 15?cM were observed. Moreover, only 17.5% of markers displayed segregation distortion and, unsurprisingly in a semi-compatible backcross, distortion was particularly pronounced surrounding the self-incompatibility locus (S) at the bottom of LG17. DNA sequences of 273 SSR markers and the S locus, representing a total of 314 loci in this investigation, were used to anchor to the ??Golden Delicious?? genome sequence. More than 260 of these loci were located on the expected pseudo-chromosome on the ??Golden Delicious?? genome or on its homeologous pseudo-chromosome. In total, 282.4?Mbp of sequence from 142 genome sequence scaffolds of the Malus genome were anchored to the ??M.27???×???M.116?? map, providing an interface between the marker data and the underlying genome sequence. This will be exploited for the identification of genes responsible for traits of agronomic importance such as dwarfing and water use efficiency.  相似文献   

19.
A genetic linkage map of grapevine was constructed using a pseudo-testcross strategy based upon 138 individuals derived from a cross of Vitis vinifera Cabernet Sauvignon × Vitis riparia Gloire de Montpellier. A total of 212 DNA markers including 199 single sequence repeats (SSRs), 11 single strand conformation polymorphisms (SSCPs) and two morphological markers were mapped onto 19 linkage groups (LG) which covered 1,249 cM with an average of 6.7 cM between markers. The position of SSR loci in the maps presented here is consistent with the genome sequence. Quantitative traits loci (QTLs) for several traits of inflorescence and flower morphology, and downy mildew resistance were investigated. Two novel QTLs for downy mildew resistance were mapped on linkage groups 9 and 12, they explain 26.0–34.4 and 28.9–31.5% of total variance, respectively. QTLs for inflorescence morphology with a large effect (14–70% of total variance explained) were detected close to the Sex locus on LG 2. The gene of the enzyme 1-aminocyclopropane-1-carboxylic acid synthase, involved in melon male organ development and located in the confidence interval of all QTLs detected on the LG 2, could be considered as a putative candidate gene for the control of sexual traits in grapevine. Co-localisations were found between four QTLs, detected on linkage groups 1, 14, 17 and 18, and the position of the floral organ development genes GIBBERELLIN INSENSITIVE1, FRUITFULL, LEAFY and AGAMOUS. Our results demonstrate that the sex determinism locus also determines both flower and inflorescence morphological traits.  相似文献   

20.
The Chi gene encodes the flavonoid synthesis enzyme chalcone-flavanone isomerase. The complete coding sequence of the Chi gene was isolated by PCR from four cultivars of cereal rye (Secale cereale L.). Unlike most monocot and dicot plant species, S. cereale has one, rather than three introns in the Chi gene. Screening of a panel of 63 Triticeae accessions, representing 31 species, showed two intron loss events in the Triticeae tribe. One intron loss occurred early in the evolution of the Triticeae tribe, while another intron loss was only detected in S. cereale Chi. A new rye-specific PCR marker was developed based on Chi intron loss polymorphism and was shown to be effective for analysis of a wide range of intergenera Triticeae hybrids for the presence of rye genome. In addition, precise genetic mapping of the rye Chi gene was carried out based on insertion/deletion polymorphism between parents of a rye mapping population. The Chi gene was mapped on the long arm of chromosome 5R 9.3 cM distal to the restriction fragment length polymorphism marker Xscb35 and 4.4 cM proximal to the locus 3Rt encoding another flavonoid synthesis enzyme, anthocyanidin-3-glucoside rhamnosyltransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号